Cycling reliability of RF-MEMS switches with Gold–Platinum multilayers as contact material

  • Viviana Mulloni
  • Benno Margesin
  • Paola Farinelli
  • Romolo Marcelli
  • Andrea Lucibello
  • Giorgio De Angelis
Technical Paper
  • 54 Downloads

Abstract

Contact resistance is the main parameter used for assessing the high cycling reliability of RF microelectromechanical (RF-MEMS) switches. In this paper the use of a modified contact material is tested and compared to pure gold in cycling experiments performed on a RF-MEMS switch in shunt capacitive configuration. The modified contact material is a gold-based multilayer with a thin layer of platinum sandwiched between two layers of gold. The experiment consists in comparing devices with the same layout but with different contact material. While the two types of switch start with similar RF performances, the device with the modified material shows a marked improvement in cycling reliability and a lower series resistance up to 106 cycles when compared to gold contact devices.

References

  1. Bartolucci G, Marcelli R, Catoni S, Margesin B, Giacomozzi F, Mulloni V, Farinelli P (2008) An equivalent-circuit model for shunt-connected coplanar microelectromechanical system switches for high frequency applications. J Appl Phys. doi:10.1063/1.3003568 Google Scholar
  2. Bartolucci G, De Angelis G, Lucibello A, Marcelli R, Proietti E (2012) Analytic modeling of RF MEMS shunt connected capacitive switches. J Electromagn Waves Appl 26:1168–1179. doi:10.1080/09205071.2012.710564 CrossRefGoogle Scholar
  3. Chen L, Lee H, Guo ZJ, McGruer NE, Gilbert KW, Leedy KD, Adams JJ (2006) Contact resistance study of noble metals and alloy films using a scanning probe microscope test station. J Appl Phys. doi:10.1063/1.2785951 Google Scholar
  4. Coutu RA, Kladitis PE, Leedy KD, Crane RL (2004) Selecting metal alloy contact materials for MEMS switches. J Micromech Microeng 14:1157–1160. doi:10.1088/0960-1317/14/8/006 CrossRefGoogle Scholar
  5. De Los Santos HJ (1999) Introduction to microelectromechanical (MEM) microwave systems. Artech House, BostonGoogle Scholar
  6. De Los Santos HJ (2002) RF MEMS circuit design for wireless communications. Artech House, BostonGoogle Scholar
  7. Giacomozzi F, Mulloni V, Colpo S, Iannacci J, Margesin B, Faes A (2011) A flexible fabrication process for RF-MEMS devices. Roman J Inf Sci Tech (ROMJIST) 14:259–268Google Scholar
  8. Lee H, Coutu RA, Mall S, Leedy KD (2006) Characterization of metal and metal alloy films as contact materials in MEMS switches. J Micromech Microeng 16:557–563CrossRefGoogle Scholar
  9. Maluf N, Williams K (2004) An introduction to microelectromechanical systems engineering, 2nd edn. Artech House, BostonGoogle Scholar
  10. Marcelli R, Papaioannu G, Catoni S, De Angelis G, Lucibello A, Proietti E, Margesin B, Giacomozzi F, Deborgies F (2009) Dielectric charging in microwave micro-electro-mechanical ohmic series and capacitive shunt switches. J Appl Phys. doi:10.1063/1.3143026 Google Scholar
  11. Marcelli R, Lucibello A, De Angelis G, Proietti E, Papaioannou G, Bartolucci G, Giacomozzi F, Margesin B (2012) Characterization and modeling of charging effects in dielectrics for the actuation of RF MEMS ohmic series and capacitive shunt switches. In: Microelectromechanical systems and devices, Dr Nazmul Islam (Ed.), ISBN: 978-953-51-0306-6. InTech, doi:10.5772/29299. http://www.intechopen.com/
  12. Mulloni V, Iannacci J, Bartali R, Micheli V, Colpo S, Laidani N, Margesin B (2012) Gold-based thin multilayers for ohmic contacts in RF-MEMS switches. Microsyst Technol 18:965–971. doi:10.1007/s00542-011-1421-9 CrossRefGoogle Scholar
  13. Nguyen C-C, Katehi LPB, Rebeiz GM (1998) Micromachined devices for wireless communications. In: Proceedings of IEEE 1998, 86, pp 1756–1768. doi:10.1109/5.704281
  14. Papaioannou G, Plana R (2010) Physics of charging in dielectrics and reliability of capacitive RF-MEMS switches. In: Advanced microwave and millimeter wave technologies semiconductor devices circuits and systems, Moumita Mukherjee (Ed.), ISBN: 978-953-307-031-5, InTech, doi:10.5772/8747. http://www.intechopen.com/
  15. Persano A, Quaranta F, Martucci MC, Creti P, Siciliano P, Cola A (2010) Transport and charging mechanisms in Ta2O5 thin films for capacitive RF MEMS switches application. J Appl Phys. doi:10.1063/1.3407542 Google Scholar
  16. Rottemberg A, Jansen H, Fiorini P, De Raedt W, Tilmans H (2002) Novel RF-MEMS capacitive switching structures. In: Proceedings European Microwave Conference 2002, Milan, Italy, Sept 24–26, pp 809–812Google Scholar
  17. Rebeiz GM (2003) RF MEMS theory, design, and technology, 1st edn. Wiley, Hoboken. doi:10.1109/5.704281 Google Scholar
  18. Senturia S (2001) Microsystem design. Springer, New YorkGoogle Scholar
  19. van Spengen WM (2012) Capacitive RF MEMS switch dielectric charging and reliability: a critical review with recommendations. J Micromech Microeng 22:074001. doi:10.1088/0960-1317/22/7/074001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Viviana Mulloni
    • 1
  • Benno Margesin
    • 1
  • Paola Farinelli
    • 2
  • Romolo Marcelli
    • 3
  • Andrea Lucibello
    • 3
  • Giorgio De Angelis
    • 3
  1. 1.Fondazione B. KesslerTrentoItaly
  2. 2.RFMicrotechPerugiaItaly
  3. 3.CNR-IMM RomaRomaItaly

Personalised recommendations