Skip to main content
Log in

Using nanogap in label-free impedance based electrical biosensors to overcome electrical double layer effect

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Point-of-care biosensor applications require low-cost and low-power solutions. They offer being easily accessible at home site. They are usable without any complex sample handling or any kind of special expertise. Impedance spectroscopy has been utilized for point-of-care biosensor applications; however, electrical double layer formed due to ions in the solution of interest has been a challenge, due to shielding of the electric field used for sensing the target molecules. Here in this study, we demonstrate a nanogap based biosensor structure with a relatively low frequency (1–100 kHz) measurement technique, which not only eliminates the undesired shielding effect of electrical double layer but also helps in minimizing the measurement volume and enabling low concentration (µ molar level) detection of target molecules (streptavidin). Repeatability and sensitivity tests proved stable and reliable operation of the sensors. These biosensors might offer attributes such as low-cost label-free detection, fast measurement and monolithic chip integrability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acar H, Garifullin R, Guler MO (2011) Self-assembled template-directed synthesis of one-dimensional silica and titania nanostructures. Langmuir 27(3):1079–1084

    Article  Google Scholar 

  • Ahluwalia A, De Rossi D, Ristori C, Schirone A, Serra G (1992) A comparative study of protein immobilization techniques for optical immunosensors. Biosens Bioelectron 7(3):207–214

    Article  Google Scholar 

  • Buitrago E, Badia MF-B, Georgiev YM, Yu R, Lotty O, Holmes JD, Nightingale AM, Guerin HM, Ionescu AM (2014) Electrical characterization of high performance, liquid gated vertically stacked SiNW-based 3D FET biosensors. Sens Actuators B Chem 199:291–300

    Article  Google Scholar 

  • Butt H-J, Graf K, Kappl M (2006) Physics and chemistry of interfaces, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Chen X, Guo Z, Yang G-M, Li J, Li M-Q, Liu J-H, Huang X-J (2010) Electrical nanogap devices for biosensing. Mater Today 13(11):28–41

    Article  Google Scholar 

  • Chen Y, Wong CC, Pui TS, Nadipalli R, Weerasekera R, Chandran J, Yu H, Rahman ARA (2012) CMOS high density electrical impedance biosensor array for tumor cell detection. Sens Actuators B Chem 173:903–907

    Article  Google Scholar 

  • Daniels JS, Pourmand N (2007) Label-free impedance biosensors: opportunities and challenges. Electroanalysis 19(12):1239–1257

    Article  Google Scholar 

  • Devkota J, Mai TTT, Stojak K, Ha PT, Pham HN, Nguyen XP, Mukherjee P, Srikanth H, Phan MH (2014) Synthesis, inductive heating, and magnetoimpedance-based detection of multifunctional Fe3O4 nanoconjugates. Sens Actuators B Chem 190:715–722

    Article  Google Scholar 

  • Dong X, Shi Y, Huang W, Chen P, Li L-J (2010) Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater 22(14):1649–1653

    Article  Google Scholar 

  • Emery JD, Shaw K, Williams B, Mazza D, Fallon-Ferguson J, Varlow M, Trevena LJ (2014) The role of primary care in early detection and follow-up of cancer. Nat Rev Clin Oncol 11(1):38–48

    Article  Google Scholar 

  • Geng Z, Kan Q, Yuan J, Chen H (2014) A route to low-cost nanoplasmonic biosensor integrated with optofluidic-portable platform. Sens Actuators B Chem 195:682–691

    Article  Google Scholar 

  • Gu B, Park TJ, Ahn J-H, Huang X-J, Lee SY, Choi Y-K (2009) Nanogap field-effect transistor biosensors for electrical detection of avian influenza. Small 5(21):2407–2412

    Article  Google Scholar 

  • Guo X (2013) Single-molecule electrical biosensors based on single-walled carbon nanotubes. Adv Mater 25(25):3397–3408

    Article  Google Scholar 

  • Im H, Huang X-J, Gu B, Choi Y-K (2007) A dielectric-modulated field-effect transistor for biosensing. Nat Nano 2(7):430–434

    Article  Google Scholar 

  • Ionescu-Zanetti C, Nevill JT, Carlo DD, Jeong KH, Lee LP (2006) Nanogap capacitors: sensitivity to sample permittivity changes. J Appl Phys 99(2):024305

    Article  Google Scholar 

  • Li F, Kosel J (2014) An efficient biosensor made of an electromagnetic trap and a magneto-resistive sensor. Biosens Bioelectron 59:145–150

    Article  Google Scholar 

  • Ligler FS, Taitt CR (2008) Optical biosensors: today and tomorrow. Elsevier, Amsterdam

    Google Scholar 

  • Maharana PK, Jha R, Palei S (2014) Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared. Sens Actuators B Chem 190:494–501

    Article  Google Scholar 

  • Narsaiah K, Jha SN, Bhardwaj R, Sharma R, Kumar R (2011) Optical biosensors for food quality and safety assurance—a review. J Food Sci Technol 49(4):383–406

    Article  Google Scholar 

  • Nevill JT, Jeong KH, Lee LP (2005) Ultrasensitive nanogap biosensor to detect changes in structure of water and ice. In: The 13th international conference on solid-state sensors, actuators and microsystems, 2005. Digest of technical papers. TRANSDUCERS’05, 2005 (vol 2), pp 1577–1580

  • Parsons R (1990) The electrical double layer: recent experimental and theoretical developments. Chem Rev 90(5):813–826

    Article  Google Scholar 

  • Pui TS, Chen Y, Wong CC, Nadipalli R, Weerasekera R, Arya SK, Yu H, Rahman ARA (2013) High density CMOS electrode array for high-throughput and automated cell counting. Sens Actuators B Chem 181:842–849

    Article  Google Scholar 

  • Schlecht U, Malavé A, Gronewold TMA, Tewes M, Löhndorf M (2007) Detection of Rev peptides with impedance-sensors—comparison of device-geometries. Biosens Bioelectron 22(9–10):2337–2340

    Article  Google Scholar 

  • Soper SA, Brown K, Ellington A, Frazier B, Garcia-Manero G, Gau V, Gutman SI, Hayes DF, Korte B, Landers JL, Larson D, Ligler F, Majumdar A, Mascini M, Nolte D, Rosenzweig Z, Wang J, Wilson D (2006) Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens Bioelectron 21(10):1932–1942

    Article  Google Scholar 

  • Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96(4):1533–1554

    Article  Google Scholar 

  • Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21(10):1887–1892

    Article  Google Scholar 

  • Xie J, Liu G, Eden HS, Ai H, Chen X (2011) Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc Chem Res 44(10):883–892

    Article  Google Scholar 

  • Yi M, Jeong K-H, Lee LP (2005) Theoretical and experimental study towards a nanogap dielectric biosensor. Biosens Bioelectron 20(7):1320–1326

    Article  Google Scholar 

  • Yoo D, Lee J-H, Shin T-H, Cheon J (2011) Theranostic magnetic nanoparticles. Acc Chem Res 44(10):863–874

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by European Union Framework Program 7 Marie Curie IRG Grant 239444 and 249196, COST NanoTP, TUBITAK Grants 109E044, 112M004, 112E052, 112M944 and 113M815. The authors acknowledge support from TUBITAK-BIDEB. The authors thank FiratYilmaz for his contributions and Dr. Mohammad Ghaffari for SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Kemal Okyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okyay, A.K., Hanoglu, O., Yuksel, M. et al. Using nanogap in label-free impedance based electrical biosensors to overcome electrical double layer effect. Microsyst Technol 23, 889–897 (2017). https://doi.org/10.1007/s00542-015-2764-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2764-4

Keywords

Navigation