Skip to main content

Miniaturized devices for isothermal DNA amplification addressing DNA diagnostics

Abstract

Microfluidics is an emerging technology enabling the development of lab-on-a-chip systems for clinical diagnostics, drug discovery and screening, food safety and environmental analysis. Currently, available nucleic acid diagnostic tests take advantage of polymerase chain reaction that allows exponential amplification of portions of nucleic acid sequences that can be used as indicators for the identification of various diseases. At the same time, isothermal methods for DNA amplification are being developed and are preferred for their simplified protocols and the elimination of thermocycling. Here, we present a low-cost and fast DNA amplification device for isothermal helicase dependent amplification implemented in the detection of mutations related to breast cancer as well as the detection of Salmonella pathogens. The device is fabricated by mass production amenable technologies on printed circuit board substrates, where copper facilitates the incorporation of on-chip microheaters, defining the thermal zone necessary for isothermal amplification methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahmad F, Hashsham SA (2012) Miniaturized nucleic acid amplification systems for rapid and point-of-care diagnostics: a review. Anal Chim Acta 733:1–15. doi:10.1016/j.aca.2012.04.031

    Article  Google Scholar 

  2. Aracil C, Perdigones F, Moreno JM, Luque A, Quero JM (2015) Portable lab-on-PCB platform for autonomous micromixing. Microelectron Eng 131:13–18. doi:10.1016/j.mee.2014.10.018

    Article  Google Scholar 

  3. Asiello PJ, Baeumner AJ (2011) Miniaturized isothermal nucleic acid amplification, a review. Lab Chip 11:1420–1430. doi:10.1039/c0lc00666a

    Article  Google Scholar 

  4. Erickson D, Li D (2004) Integrated microfluidic devices. Anal Chim Acta 507:11–26. doi:10.1016/j.aca.2003.09.019

    Article  Google Scholar 

  5. Fang X, Liu Y, Kong J, Jiang X (2010) Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal Chem 82:3002–3006. doi:10.1021/ac1000652

    Article  Google Scholar 

  6. Gill P, Ghaemi A (2008) Nucleic acid isothermal amplification technologies—a review. Nucleosides Nucleotides Nucleic Acids 27:224–243. doi:10.1080/15257770701845204

    Article  Google Scholar 

  7. Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110. doi:10.1039/b706364b

    Article  Google Scholar 

  8. Kaprou G et al (2015) Miniaturized devices towards an integrated lab-on-a-chip platform for DNA diagnostics. In: Progress in biomedical optics and imaging, Proceedings of SPIE. doi:10.1117/12.2181953

  9. Kefala IN, Papadopoulos VE, Karpou G, Kokkoris G, Papadakis G, Tserepi A (2015) A labyrinth split and merge micromixer for bioanalytical applications. Microfluid Nanofluid. doi:10.1007/s10404-015-1610-4

    Google Scholar 

  10. Kopp MU, De Mello AJ, Manz A (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280:1046–1048. doi:10.1126/science.280.5366.1046

    Article  Google Scholar 

  11. Lutz S et al (2010) Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip 10:887–893. doi:10.1039/b921140c

    Article  Google Scholar 

  12. Mahalanabis M, Do J, Almuayad H, Zhang JY, Klapperich CM (2010) An integrated disposable device for DNA extraction and helicase dependent amplification. Biomed Microdev 12:353–359. doi:10.1007/s10544-009-9391-8

    Article  Google Scholar 

  13. Mahmoudian L, Kaji N, Tokeshi M, Nilsson M, Baba Y (2008) Rolling circle amplification and circle-to-circle amplification of a specific gene integrated with electrophoretic analysis on a single chip. Anal Chem 80:2483–2490. doi:10.1021/ac702289j

    Article  Google Scholar 

  14. Mark D, Haeberle S, Roth G, Von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182. doi:10.1039/b820557b

    Article  Google Scholar 

  15. Moschou D et al (2013) Integrated biochip for PCR-based DNA amplification and detection on capacitive biosensors. In: Progress in biomedical optics and imaging—proceedings of SPIE. doi:10.1117/12.2017690

  16. Moschou D, Vourdas N, Kokkoris G, Papadakis G, Parthenios J, Chatzandroulis S, Tserepi A (2014) All-plastic, low-power, disposable, continuous-flow PCR chip with integrated microheaters for rapid DNA amplification. Sens Actuators B Chem 199:470–478. doi:10.1016/j.snb.2014.04.007

    Article  Google Scholar 

  17. Papadakis G, Gizeli E (2014) Screening for mutations in BRCA1 and BRCA2 genes by measuring the acoustic ratio with QCM. Anal Methods 6:363–371. doi:10.1039/c3ay41143e

    Article  Google Scholar 

  18. Papadopoulos VE et al (2014) A passive micromixer for enzymatic digestion of DNA. Microelectron Eng 124:42–46. doi:10.1016/j.mee.2014.04.011

    Article  Google Scholar 

  19. Papadopoulos VE, Kokkoris G, Kefala IN, Tserepi A (2015) Comparison of continuous-flow and static-chamber μPCR devices through a computational study: the potential of flexible polymeric substrates. Microfluid Nanofluid 19:867–882. doi:10.1007/s10404-015-1613-1

    Article  Google Scholar 

  20. Shen K, Chen X, Guo M, Cheng J (2005) A microchip-based PCR device using flexible printed circuit technology. Sens Actuators B Chem 105:251–258. doi:10.1016/j.snb.2004.05.069

    Article  Google Scholar 

  21. Tsougeni K et al (2016) Plasma nanotextured polymeric lab-on-a-chip for highly efficient bacteria capture and lysis. Lab Chip. doi:10.1039/C5LC01217A

    Google Scholar 

  22. Vincent M, Xu Y, Kong H (2004) Helicase-dependent isothermal DNA amplification. EMBO Rep 5:795–800. doi:10.1038/sj.embor.7400200

    Article  Google Scholar 

  23. Vorkas PA, Christopoulos K, Kroupis C, Lianidou ES (2010) Mutation scanning of exon 20 of the BRCA1 gene by high-resolution melting curve analysis. Clin Biochem 43:178–185. doi:10.1016/j.clinbiochem.2009.08.024

    Article  Google Scholar 

  24. Wego A, Richter S, Pagel L (2001) Fluidic microsystems based on printed circuit board technology. J Micromech Microeng 11:528–531. doi:10.1088/0960-1317/11/5/313

    Article  Google Scholar 

  25. Wu A, Wang L, Jensen E, Mathies R, Boser B (2010) Modular integration of electronics and microfluidic systems using flexible printed circuit boards. Lab Chip 10:519–521. doi:10.1039/b922830f

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. S. Chatzandroulis, NCSR “Demokritos”, for the development of the temperature control unit, to be presented in detail in future work. This work is partly funded by the General Secretariat for Research and Technology/Ministry of Education, Greece and European Regional Development Fund (Sectoral Operational Program: Competitiveness and Entrepreneurship, NSRF 2007-2013)/European Commission (“SYNERGASIA II” project “LambSense: Converging Lamb wave sensors with microtechnologies towards an integrated Lab-on-chip for clinical diagnostics” 11SYN-5-502) and the EC under FP7-ICT-2011.3.2 “LOVE-FOOD: Love wave fully integrated Lab-on-Chip platform for food pathogen detection” (Grant Agreement No: 317742).

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. D. Kaprou.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaprou, G.D., Papadakis, G., Papageorgiou, D.P. et al. Miniaturized devices for isothermal DNA amplification addressing DNA diagnostics. Microsyst Technol 22, 1529–1534 (2016). https://doi.org/10.1007/s00542-015-2750-x

Download citation

Keywords

  • Microfluidic Device
  • Print Circuit Board
  • Computer Numerical Control
  • Temperature Ramp
  • Substrate Thickness