Skip to main content
Log in

Ultrasonic fabrication of micro nozzles from a stack of PVDF foils for generating and characterizing microfluidic dispersions

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Nozzles with circular cross-section and a diameter varying in axial direction have been fabricated in a microfluidic channel from polyvinylidene fluoride as chemically resistive thermoplastic polymer. Smallest diameter and length of the nozzle are approximately 150 µm and 3.4 mm, respectively. The nozzle and the entire channel system have been fabricated from two halves generated by ultrasonic hot embossing and bonded to each other by ultrasonic welding. Alignment during ultrasonic welding was assisted by a fit of energy directors and an accuracy of 35 and 10 µm in normal and lateral direction, respectively, was obtained. Thermoplastic molding of the two halves of the channel structures was performed by ultrasonic hot embossing with a cycle time of a few seconds. The development was significantly accelerated by milling the tools directly into aluminum plates. This way, new designs were realized within a day. The micro nozzles have been proven generating liquid/liquid dispersions of different flow patterns as a function of flow velocity and Capillary number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Burns JR, Ramshaw C (2001) The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab Chip 1:10–15

    Article  Google Scholar 

  • Christopher GF, Anna SL (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40:R319–R336

    Article  Google Scholar 

  • de Menech M, Garstecki P, Jousse F, Stone HA (2008) Transition from squeezing to dripping in a microfluidic T-shaped junction. J Fluid Mech 595:141–161

    Article  MATH  Google Scholar 

  • Forrester SE, Rielly CD (1998) Bubble formation from cylindrical, flat and concave sections exposed to a strong liquid cross-flow. Chem Eng Sci 53:1517–1527

    Article  Google Scholar 

  • Fu T, Ma Y, Funfschilling D, Zhu C, Li HZ (2010) Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction. Chem Eng Sci 65:3739–3748

    Article  Google Scholar 

  • Garstecki P (2010) Formation of droplets and bubbles in microfluidic systems. microfluidics based microsystems. Springer, Dordrecht

    Google Scholar 

  • Gu H, Duits MHG, Mugele F (2011) Droplets formation and merging in two-phase flow microfluidics. Int J Mol Sci 12:2572–2597

    Article  Google Scholar 

  • Gupta A, Kumar R (2010) Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction. Microfluid Nanofluid 8:799–812

    Article  Google Scholar 

  • Harsch S, Ehrfeld W, Maner A (1988) Untersuchungen zur Herstellung von Mikrostrukturen großer Strukturhöhe durch Galvanoformung in Nickelsulfamatelektrolyten. KfK-Bericht 4455, Kernforschungszentrum Karlsruhe, ISSN 0303-4003

  • Heckele M, Schomburg WK (2004) Review on micro molding of thermoplastic polymers. J Micromech Microeng 14:R1–R14. doi:10.1088/0960-1317/14/3/R01

    Article  Google Scholar 

  • Holvey C, Macchi A, Kockmann N, Roberge DM (2011) Pressure drop and mixing in single phase microreactors: simplified designs of micromixers. Chem Eng Proc 50:1069–1075

    Article  Google Scholar 

  • Kashid MN, Agar DW (2007) Hydrodynamics of liquid–liquid slug flow capillary microreactor: flow regimes, slug size and pressure drop. Chem Eng J 131:1–13

    Article  Google Scholar 

  • Khuntontong P, Blaser T, Schomburg WK (2008) Ultrasonic micro hot embossing of thermoplastic polymers. In: Proceedings of 24th Annual Meeting of the Polymer Processing Society, PPS24, Salerno, Italy, June 15–19. p 364

  • Kockmann N (2006) Micro process engineering. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Kockmann N (2008) Pressure loss and transport rates in microstructured devices with chemical reactions. Chem Eng echn 31:1188–1195

    Google Scholar 

  • Kockmann N, Gottsponer M (2010) Heat transfer limitations of gas-liquid exothermic reactions in micro-channels. In: Proceedings of ASME-ICNMM2010. 30389, Montreal

  • Kockmann N, Roberge DM (2011) Scale-up concept for modular microstructured reactors based on mixing, heat transfer, and reactor safety. Chem Eng Pro 50:1017–1026

    Article  Google Scholar 

  • Kulkarni AA, Joshi JB (2005) Bubble Formation and Bubble Rise Velocity in Gas-Liquid Systems: a Review. Ind Eng Chem Res 44:5873–5931

    Article  Google Scholar 

  • Liao S, Gerhardy C, Sackmann J, Schomburg WK (2014) Tools for ultrasonic hot em-boss-ing. Microsyst Technol. doi:10.1007/s00542-014-2232-6

    Google Scholar 

  • Liepe F, Meusel W, Möckel H, Platzer B, Weissgärber H (1988) Stoffvereinigen in fluiden Phasen. Verfahrens-technische Berechnungsmethoden. Wiley-VCH, Weinheim

    Google Scholar 

  • Lin C-H, Chen R (2006) Ultrasonic nanoimprint lithography: a new approach to nanopatterning. J Micro/Nanolith MEMS MOEMS 5:1. doi:10.1117/1.2172992

    Google Scholar 

  • Liu S-J, Dung Y-T (2005) Hot embossing precise structure onto plastic plates by ultrasonic vibration. Polym Eng Sci 45:915. doi:10.1002/pen.20357

    Article  Google Scholar 

  • Liu H, Zhang Y (2011) Droplet formation in microfluidic cross-junctions. Phys Fluids 23:082101–1–082101-12. doi:10.1063/1.3615643

    Google Scholar 

  • Matsuyama K, Mine K, Kubo H, Aoki N, Mae K (2010) Optimization methodology of operation of orifice-shaped micromixer based on micro-jet concept. Chem Eng Sci 65:5912–5920

    Article  Google Scholar 

  • Mekaru H, Nakamura O, Maruyama O, Maeda R, Hattori T (2006) Development of precision transfer technology of atmospheric hot embossing by ultrasonic vibration. Microsyst Technol 13:385–391. doi:10.1007/s00542-006-0203-2

    Article  Google Scholar 

  • Mekaru H, Goto H, Takahashi M (2007) Development of ultrasonic micro hot embossing technology. Microelectron Eng 84:1282–1287. doi:10.1016/j.mee.2007.01.235

    Article  Google Scholar 

  • Memering B, Gerhardy C, Schomburg WK (2014) Roll-to-roll-production of micro structures in polymer foils by ultrasonic hot embossing. Publication “Microsystems Technology in Germany 2014”, trias consult, ISSN 2191-7183, pp 40–41, http://www.microsystems-technology-in-germany.de/MST%202014.pdf. Accessed 27 Oct 2015

  • Okubo Y, Maki T, Aoki N, Khoo TH, Ohmukai Y, Mae K (2008) Liquid-liquid extraction for efficient synthesis and separation by utilizing micro spaces. Chem Eng Sci 63:4070–4077

    Article  Google Scholar 

  • Park JM, Kim NH, Lee B-K, Lee K-H, Kwon TH (2008) Nickel stamp fabrication and hot embossing for mass-production of micro/nano combined structures using anodic aluminum oxide. Microsyst Technol 14:1689–1694. doi:10.1007/s00542-007-0504-0

    Article  Google Scholar 

  • Parmar R, Majumder SK (2013) Microbubble generation and microbubble-aided transport process intensification—A state-of-the-art report. Chem Eng Proc 64:79–97

    Article  Google Scholar 

  • Potente H (2004) Fügen von Kunststoffen—Grundlagen, Verfahren, Anwendung. Carl Hanser, München

    Google Scholar 

  • Sackmann J, Burlage K, Gerhardy C, Memering B, Liao S, Schomburg WK (2015) Review on ultrasonic fabrication of polymer micro devices. Ultrasonics 56:189–200. doi:10.1016/j.ultras.2014.08.007

    Article  Google Scholar 

  • Schubert H (2003) Handbuch der Mechanischen Verfahrenstechnik. Wiley-VCH, Weinheim

    Google Scholar 

  • Seemann R, Brinkmann M, Pfohl T, Herminghaus S (2012) Droplet based microfluidics. Rep Prog Phys 75:1–41

    Article  Google Scholar 

  • Shao N, Gavriilidis A, Angeli P (2009) Flow regimes for adiabatic gas-liquid flow in microchannels. Chem Eng Sci 64:2749–2761

    Article  Google Scholar 

  • Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45:7336–7356

    Article  Google Scholar 

  • Tollkoetter A, Kockmann N (2014) A modular microfluidic system for high flow rate re-dispersion of gas–liquid. In: Proceedings of ASME-ICNMM2014-22048, Chicago, Illinois

  • Tollkoetter A, Schirmbeck F, Wesholowski J, Kockmann N (2015) High flow rate micro orifice dispersion of gas–liquid flow. In: Proceedings of ASME-ICNMM2015-48221, San Francisco, California

  • Tollkoetter A, Sackmann J, Baldhoff T, Schomburg WK, Kockmann N (2015) Modulares Mikroreaktorsystem aus ultraschallheißgeprägten Polymerfolien. Chem Ing Techn, early view, Feb 2015

  • Yue J, Luo L, Gonthier Y, Chen G, Yuan Q (2008) An experimental investigation of gas–liquid two-phase flow in single microchannel contactors. Chem Eng Sci 63:4189–4202

    Article  Google Scholar 

  • Zhao C-H (2013) Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv Drug Deli Rev 65:1420–1446

    Article  Google Scholar 

  • Zhao C-X, Middelberg APJ (2011) Two-phase microfluidic flows. Chem Eng Sci 66:1394–1411

    Article  Google Scholar 

Download references

Acknowledgments

The results presented here were partly achieved with the support of Deutsche Forschungsgemeinschaft with the support code SCHO 850/4 and by a scholarship provided by China Scholarship Council with award no. 2011683003.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Kockmann or W. K. Schomburg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, S., Sackmann, J., Tollkötter, A. et al. Ultrasonic fabrication of micro nozzles from a stack of PVDF foils for generating and characterizing microfluidic dispersions. Microsyst Technol 23, 695–702 (2017). https://doi.org/10.1007/s00542-015-2708-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2708-z

Keywords

Navigation