Skip to main content
Log in

Effects of slots on thermoelastic quality factor of a vertical beam MEMS resonator

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Thermoelastic damping is one of the dominant mechanisms of structural damping in vacuum-operated microresonators. A three dimensional numerical model based on the finite element method is used for simulating thermoelastic damping in clamped–clamped microelectromechanical beam resonators. In this regards, both simple and slotted beam are considered. To understand the effect of slot positions and sizes on the resonator performance, resonant frequency and thermoelastic quality factor are calculated for both simple and slotted beams for a wide range of beam length from 10 to 400 µm. Punching slots in the resonator beam reduces the stiffness and mass of the beam which affect the resonant frequency. In addition thermo-mechanical coupling mechanisms of the resonator are affected by the slots which improve the thermoelastic quality factor. For most of the beam lengths, it is shown that the slots at the beam-anchor interface region, where the strain is high, are more effectively enhanced the thermoelastic quality factor than one at the centre of the beam region. However, the highest resonance frequency is achieved with the slots at the center region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdelsalam M, Wahba M, Abdelmoneum M, Duarte D, Ismail Y (2010) Supporting circuitry for a fully integrated micro electro mechanical (MEMS) oscillator in 45 nm CMOS Technology. In: Proceedings of IEEE international conference on VLSI system on chip, pp 259–236. doi:10.1109/VLSISOC.2010.5642670

  • Bannon FD, Clark JR, Nguyen CT-C (2000) High-Q HF microelectromechanical filters. IEEE J Solid-State Circuits 35:512–526. doi:10.1109/4.839911

    Article  Google Scholar 

  • Candler RN, Duwel A, Varghese M, Chandorkar SA, Hopcroft MA, Park W-T, Kim B, Yama G, Partridge A, Lutz M, Kenny TW (2006) Impact of geometry on thermoelastic dissipation in micromechanical resonant Beams. J Micro-electromech Syst 15:927–934. doi:10.1109/JMEMS.2006.879374

    Article  Google Scholar 

  • Dragoi V, Pabo E, Burggraf J, Mittendorfer G (2012) CMOS: compatible wafer bonding for MEMS and wafer-level 3D integration. Microsyst Technol 18:1065–1075. doi:10.1007/s00542-012-1439-7

    Article  Google Scholar 

  • Duwel A, Candler RN, Kenny TW, Varghese M (2006) Engineering MEMS resonators with low thermoelastic damping. J Micro-electromech Syst 16:1437–1445. doi:10.1109/JMEMS.2006.883573

    Article  Google Scholar 

  • Hao Z, Erbil A, Ayazi F (2003) An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations. Sens Actuators A 109:156–164. doi:10.1016/j.sna.2003.09.037

    Article  Google Scholar 

  • Lifshitz R, Roukes ML (2000) Thermoelastic damping in micro and nanomechanical systems. Phys Rev B: Condens Matter 61:5600–5609. doi:10.1103/PhysRevB.61.5600

    Article  Google Scholar 

  • Lin Y-W, Lee S, Li S-S, Xie Y, Ren Z, Nguyen CTC (2004) Series-resonant VHF micromechanical resonator reference oscillators. IEEE J Solid-State Circuits 39:2477–2491. doi:10.1109/JSSC.2004.837086

    Article  Google Scholar 

  • Lopez JL, Verd J, Uranga A, Giner J, Murillo G, Torres F, Abadal G, Barniol N (2009) A CMOS–MEMS RF-tunable bandpass filter based on two high-Q 22-MHz polysilicon clamped-clamped beam resonators. IEEE Electron Device Lett 30:718–720. doi:10.1109/LED.2009.2022509

    Article  Google Scholar 

  • Muniraj NJR (2011) MEMS based humidity sensor using Si cantilever beam for harsh environmental conditions. Microsyst Technol 17:27–29. doi:10.1007/s00542-010-1174-x

    Article  Google Scholar 

  • Nguyen CTC (2007) MEMS technology for timing and frequency control. IEEE Trans Ultrason Ferroelectr Freq Control 54:251–270. doi:10.1109/TUFFC.2007.240

    Article  Google Scholar 

  • Prabhakar S, Vengallatore S (2008) Theory of thermoelastic damping in micromechanical resonators with two-dimensional heat conduction. J Micro-electromech Syst 17:494–502. doi:10.1109/JMEMS.2008.916316

    Article  Google Scholar 

  • Roszhart TV (1990) The effect of thermoelastic internal friction on the Q of micromachined silicon resonators. In: Proceedings of solid-state sensor and actuator workshop technical digest, pp 13–16. doi:10.1109/SOLSEN.1990.109810

  • Shi H, Fan S, Xing W, Li C, Sun J, Jing Z (2013) Design and FEM simulation study of the electro-thermal excitation resonant beam with slit-structure. Microsyst Tech 19:979–987. doi:10.1007/s00542-012-1682-y

    Article  Google Scholar 

  • Younis ML (2011) MEMS linear and nonlinear statics and dynamics. Springer, New York

    Book  Google Scholar 

  • Zener C (1937) Internal friction in solids I: theory of internal friction in reeds. Phys Rev 52:230–235. doi:10.1103/PhysRev.52.230

    Article  MATH  Google Scholar 

  • Zener C (1938) Internal friction in solids II: general theory of thermoelastic internal friction. Phys Rev 53:90–99. doi:10.1103/PhysRev.53.90

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Asadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi, S., Sheikholeslami, T.F. Effects of slots on thermoelastic quality factor of a vertical beam MEMS resonator. Microsyst Technol 22, 2723–2730 (2016). https://doi.org/10.1007/s00542-015-2652-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2652-y

Keywords

Navigation