Advertisement

Microsystem Technologies

, Volume 22, Issue 3, pp 603–608 | Cite as

Microwave atomic force microscope: MG63 osteoblast-like cells analysis on nanometer scale

  • Lan Zhang
  • Yuanhui Song
  • Atsushi Hosoi
  • Yasuyuki Morita
  • Yang Ju
Technical Paper
  • 182 Downloads

Abstract

In this paper, we report a non-invasive and non-destructive probing method for analyzing the MG63 osteoblast-like cells. High frequency microwave atomic force microscope (M-AFM) can be used to measure the surface topography and microwave image of MG63 cells simultaneously in one scanning process. Under the frequency modulation AFM mode, the M-AFM probe tip can scan above the cell surface, maintaining a constant stand-off distance and the created lateral forces were small enough as not to sweep away or deform the fragile biomolecules. By analyzing the results, quantification such as, the number and distribution of organelles and proteins of MG63 cells as well as their dimension and electrical property information can be characterized. The unique potentials of that M-AFM imaging biological substrates with no damaging manner and nanometer scale resolution, while the original structure and function of the biomolecules during the investigation are preserved, make this technique very attractive to biologists.

Keywords

Atomic Force Microscopy MG63 Cell Microwave Signal Residual Body Intracellular Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science under Grants-in-Aid for Scientific Research (A) 26249001.

References

  1. Afrin R, Zohora US, Uehara H, Watanabe-Nakayama T, Ikai A (2009) Atomic force microscopy for cellular level manipulation: imaging intracellular structures and DNA delivery through a membrane hole. J Mol Recognit 22:363CrossRefGoogle Scholar
  2. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57CrossRefGoogle Scholar
  3. Briegel A, Ortega DR, Tocheva EI, Wuichet K, Li Z, Chen S, Müller A, Iancu CV, Murphy GE, Dobroa MJ, Zhulin IB, Jensen GJ (2009) Universal architecture of bacterial chemoreceptor arrays. Proc Natl Acad Sci 05:181106Google Scholar
  4. Cremer C, Cremer T (1978) Considerations on a laser-scanning-microscope with high resolution and depth of field. Microsc Acta 81:31Google Scholar
  5. Farina M, Lucesoli A, Pietrangelo T, di Donato A, Fabiani S, Venanzoni G, Mencarelli D, Rozzi T, Morini A (2011) Disentangling time in a near-field approach to scanning probe microscopy. Nanoscale 3:3589CrossRefGoogle Scholar
  6. Farina M, Di Donato A, Monti T, Pietrangelo T, Da Ros T, Turco A, Venanzoni G, Morini A (2012) Tomographic effects of near-field microwave microscopy in the investigation of muscle cells interacting with multi-walled carbon nanotubes. Appl Phys Lett 101:203101CrossRefGoogle Scholar
  7. Han SW, Nakamur C, Obataya I, Nakamura N, Miyake J (2005) A molecular delivery system by using AFM and nanoneedle. Biosens Bioelectron 20:2120CrossRefGoogle Scholar
  8. Ju Y, Sato H, Soyama H (2005) Fabrication of the tip of GaAs microwave probe by wet etching. In: Proceedings of IPACK 2005, p 73140Google Scholar
  9. Ju Y, Kobayashi T, Soyama H (2008) Development of a nanostructural microwave probe based on GaAs. Microsyst Technol 14:1021CrossRefGoogle Scholar
  10. Kirmizis D, Logothetidis S (2010) Atomic force microscopy probing in the measurement of cell mechanics. Int J Nanomed 5:137CrossRefGoogle Scholar
  11. Matsumoto B (2002) Cell biological applications of confocal microscopy, Academic Press, New YorkGoogle Scholar
  12. Matsuura-Tokita K, Takeuchi M, Ichihara A, Mikuriya K, Nakano A (2006) Live imaging of yeast golgi cisternal maturation. Nature 441:1007CrossRefGoogle Scholar
  13. McMaster TJ, Winfield MO, Karp A, Miles MJ (1996) Analysis of cereal chromosomes by atomic force microscopy. Genome 39:439CrossRefGoogle Scholar
  14. Morita Y, Mukai T, Ju Y, Watanabe S (2013) Evaluation of stem cell-to-tenocyte differentiation by atomic force microscopy to measure cellular elastic moduli. Cell Biochem Biophys 66:73CrossRefGoogle Scholar
  15. Oh YJ, Huber HP, Hochleitner M, Duman M, Bozna B, Kastner M, Kienberger F, Hinterdorfer P (2011) High-frequency electromagnetic dynamics properties of THP1 cells using scanning microwave microscopy. Ultramicroscopy 111:1625CrossRefGoogle Scholar
  16. Park J, Hyun S, Kim A, Kim T, Char K (2005) Observation of biological samples using a scanning microwave microscope. Ultramicroscopy 102:101CrossRefGoogle Scholar
  17. Qian L, Xiao H, Zhao G, He B (2011) Synthesis of modified guanidine-based polymers and their antimicrobial activities revealed by AFM and CLSM. ACS Appl Mater Interfaces 3:1895CrossRefGoogle Scholar
  18. Rosrcha C, Braetb F, Wisseb E, Radmacher M (1997) AFM imaging and elasticity measurements on living rat liver macrophages. Cell Biol Int 21:685CrossRefGoogle Scholar
  19. Schaer-Zammaretti P, Ubbink J (2003) Imaging of lactic acid bacteria with AFM-elasticity and adhesion maps and their relationship to biological and structural data. Ultramicroscopy 97:199CrossRefGoogle Scholar
  20. Segura-Valdez ML, Zamora-Cura A, Gutiérrez-Quintanar N, Villalobos-Nájera E, Rodríguez-Vázquez JB, Galván-Arrieta TC, Jiménez-Rodríguez D, Agredano-Moreno LT, Lara-Martínez R, Jiménez-García LF (2010) Visualization of cell structure in situ by atomic force microscopy. In: Méndez-Vilas A, Díaz J (eds) Microscopy: science, technology, applications and education, vol 1. Formatex Research Center, Badajoz, pp 441–448Google Scholar
  21. Tabib-Azar M, Wang Y (2004) Design and fabrication of scanning near-field microwave probes compatible with atomic force microscopy to image embedded nanostructures. IEEE Trans Microw Theory Tech 52:971CrossRefGoogle Scholar
  22. Tsilimbaris MK, Lesniewska E, Lydataki S, Le Grimellec C, Goudonnet JP, Pallikaris IG (2000) The use of atomic force microscopy for the observation of corneal epithelium surface. Invest Ophthalmol Vis Sci 41:680Google Scholar
  23. Tumminia SJ, Mitton KP, Arora J, Zelenka P, Epstein DL, Russell P (1998) Mechanical stretch alters the actin cytoskeletal network and signal transduction in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 39:1361Google Scholar
  24. Ushiki T, Yamamoto S, Hitomi J (2000) Atomic force microscopy of living cells. Jpn J Appl Phys 39:3761CrossRefGoogle Scholar
  25. Winfield MO, McMaster TJ, Karp A, Miles MJ (1995) Atomic force microscopy of plant chromosomes. Chromosome Res 3:128CrossRefGoogle Scholar
  26. Xu B, Song G, Ju Y (2011) Effect of focal adhesion kinase on the regulation of realignment and tenogenic differentiation of human mesenchymal stem cells by mechanical stretch. Connect Tissue Res 52:373CrossRefGoogle Scholar
  27. Zhang L, Ju Y, Hosoi A, Fujimoto A (2010) Microwave atomic force microscopy imaging for nanometer-scale electrical property characterization. Rev Sci Instrum 81:123708CrossRefGoogle Scholar
  28. Zhang L, Ju Y, Hosoi A, Fujimoto A (2012a) Microwave atomic force microscopy: quantitative measurement and characterization of electrical properties on the nanometer scale. Appl Phys Express 5:016602CrossRefGoogle Scholar
  29. Zhang L, Ju Y, Hosoi A, Fujimoto A (2012b) Measurement of electrical properties of materials under the oxide layer by microwave-AFM probe. Microsyst Technol 18:1917CrossRefGoogle Scholar
  30. Zhou XT, Zhang F, Hu J, Li X, Ma XM, Chen Y (2010) Cell imprinting and AFM imaging of cells cultured on nanoline patterns. Microelectron Eng 87:1439CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lan Zhang
    • 1
  • Yuanhui Song
    • 1
  • Atsushi Hosoi
    • 1
  • Yasuyuki Morita
    • 1
  • Yang Ju
    • 1
  1. 1.Department of Mechanical Science and EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations