Skip to main content
Log in

Design of 5.5 GHz linear low noise amplifier using post distortion technique with body biasing

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A highly linear 5.5 GHz low noise amplifier (LNA) has been designed exploiting source inductive degeneration topology by using post distortion linearization techniques in 0.18 m CMOS technology. This technique improves the input third order intercept point \((IIP_{3})\) of a low noise amplifier. For enhancing the linearity, this technique used a diode connected MOSFET as IMD sinker and forward body biased which is done in cadence tool. The proposed low noise amplifier achieves high \(IIP_{3}\) by using two transistors, main and auxiliary transistors. Also source inductive degeneration topology is employed in the proposed LNA to optimize the noise figure (NF) and \(S_{11}\) at high frequency. In order to reduce power consumption and threshold voltage, Forward Body Biased technique was implemented. In this paper, the first section discusses the most widely used eight linearization techniques and in the second section, the proposed circuit is represented along with its employed topology, techniques and the simulated results. The proposed LNA achieves a simulated third order input intercept \((IIP_{3})\) of 9.20 dBm while consuming 10.8 mW from a power supply of 1.8 V. it also exhibits a measured gain of 11.34 dB and NF, NF of 2.33 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Aya M, Thierry T, Yann D, Jean-Baptiste B (2003) A very low voltage low power CMOS low noise amplifier with forward body bias. IEEE, Aug 2010.468

  • Bowick C, Blyler J, Ajluni C (2007) RF circuit design, 2nd edn. Newnes, London

    Google Scholar 

  • Chang CP, Chen JH, Hung SH, Su CC, Wang YH (2009) A novel post linearization technique for fully integrated 5.5 GHz high-linearity LNA. In: IEEE international innovative computing, information and control conference, Kaohsiung, Taiwan, pp 577–580

  • Chang C-P, Chien W-C, Su C-C, Wang Y-H (2010) Linearity improvement of cascade CMOS LNA using a diode connected NMOS transistor with parallel RC CKT

  • Cheng W, Annema AJ, Croon JA, Klaasen DBM, Nauta B (2008) A general weak nonlinearity model for LNAs. In: Proceedings of IEEE custom integrated circuits conference, pp 221–224

  • Chen F, Zhang W, Rhee W (2013) A 3.8-mW 3.54-GHz regenerative FM-UWB receiver with enhanced linearity by utilizing a wideband LNA and dual bandpass filters. IEEE Trans Microw Theory Tech 61(9):3350–3359

    Article  Google Scholar 

  • Chu Y-K, Liao C-H, Chuang H-R (2003) 5.7 GHz 0.18/spl mu/m CMOS gain-controlled LNA andmixer for 802.11a WLAN applications. In: 2003 IEEE radio frequency integrated circuits (RFIC) symposium, pp 221–224

  • Ellinger F (2008) Radio frequency integrated circuits and technologies, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Fan X, Zhang H, Snchez-Sinencio E (2008) A noise reduction and linearity improvement technique for a differential cascode LNA. IEEE J Solid State Circuits 43(3):588–599

    Article  Google Scholar 

  • Fan X, Snchez-Sinencio E, Silva-Martinez J (2005) A 3 GHz–10 GHz common gate ultra wide band low noise amplifier. In: Proceedings of IEEE midwest symposium on circuits and systems, pp 631–634

  • Ganesan S, Snchez-Sinencio E, Silva-Martinez J (2006) A highly linear low noise amplifier. IEEE Trans Microw Theory Tech 54(12):4079–4085

    Article  Google Scholar 

  • Hsieh H-H, Wang J-H, Lu L-H (2008) Gain-enhancement techniques for CMOS folded cascode LNAs at low-voltage operations. IEEE Trans Microw Theory Tech 56(8):1807–1816

    Article  Google Scholar 

  • Im D, Nam I, Kim H, Lee K (2009) A wide band CMOS low noise amplifier employing noise and IM2 distortion cancellation for a digital TV tuner. IEEE J Solid State Circuits 44:686–698

    Article  Google Scholar 

  • Kim TW, Kim B, Lee K (2003) Highly linear RF CMOS amplifier and mixer adopting MOSFET transconductance linearization by multiple gated transistors. In: IEEE radio frequency integrated circuits symposium, pp 107–110

  • Kim B, Ko J-S, Lee K (2000) A new linearization technique for MOSFET RF amplifier using multiple gated transistors. IEEE Microw Guided Wave Lett 10:371–373

    Article  Google Scholar 

  • Kim T-S, Kim B-S (2006) Post-linearization of cascode CMOS LNA using folded PMOS IMD sinker. IEEE Microw Wirel Compon Lett 16(4):182–184

    Article  Google Scholar 

  • Kim N, Aparin V, Barnett K, Persico C (2006) A cellular-band CDMA CMOS LNA linearized using active post-distortion. IEEE J Solid State Circuits 41(7):1530–1534

    Article  Google Scholar 

  • Lee TH (1998) The design of CMOS radio-frequency integrated circuits. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Leroux P, Steyaert M (2006) LNA ESD co design for fully integrated CMOS wireless receivers. Springer, Netherlands

    Google Scholar 

  • Liu R-C, Lee C-R, Wang H, Wang C-K (2002) A 5.8-GHz two-stage high-linearity low-voltage low noise amplifier in a 0.35-um CMOS technology. In: IEEE radio frequency integrated circuits (RFIC) symposium, pp 221–224

  • Nguyen TK et al (2004) CMOS low-noise amplifier design optimization techniques. IEEE Trans Microw Theory Tech 52(5):1433–1442

    Article  Google Scholar 

  • Raja MK, Boon TTC, Kumar KN, Jau WS (2003) A fully integrated variable gain 5.75-GHz LNA with on chip active balun for WLAN. In: 2003 IEEE radio frequency integrated circuits (RFIC) symposium, pp 439–442

  • Razavi B, Behzad R (1998) RF microelectronics. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Seyedhosseinzadeh N, Nabavi A (2014) A highly linear CMOS low noise amplifier for K band applications. Int J Electron 101(12):1607–1620

    Article  Google Scholar 

  • Taibi A, Slimane A (2013) Low power and high linear reconfigurable CMOS LNA for multi-standard wireless applications. In: IEEE conference

  • Thacker MB, Awakhare M (2014) Multi-standard highly linear CMOS LNA. In: International conference on electronic systems, signal processing and computing technologies

  • Xin C, Snchez-Sinencio E (2004) A linearization technique for RF low noise amplifier. In: Proceedings of IEEE international circuits systems symposium, Vancouver, BC, Canada, vol 4, pp 313–316

  • Zhang H, Fan X, Snchez-Sinencio E (2009) A low-power linearized, ultra-wide band LNA design technique. IEEE J Solid State Circuits 44(2):320–330

    Article  Google Scholar 

  • Zhang H, Snchez-Sinencio E (2011) Linearization techniques for low noise amplifier: a tutorial. IEEE Trans Circuits Syst I 58(1):22–36

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is carried out at National Institute of Technology Silchar. We are thankful to Prof. F. A. Talukdar for his support. We also thank IIT Guwahati for providing the VLSI Lab for making layout.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Devi, A., Sarkar, A. et al. Design of 5.5 GHz linear low noise amplifier using post distortion technique with body biasing. Microsyst Technol 22, 2681–2690 (2016). https://doi.org/10.1007/s00542-015-2556-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2556-x

Keywords

Navigation