Skip to main content
Log in

A quantitative optimisation model for a horizontal MEMS solid propellant thruster with experimental verification

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper studies the effect of multiple geometric parameters of a micronozzle on a MEMS solid propellant thruster (MSPT) and establishes a quantitative optimisation model. Influences of the structural parameters of the micronozzle on performance are accurately calculated. The significance and contribution ratio of each parameter are evaluated by F distribution. Correspondingly, a horizontal MSPT is fabricated and tested to prove the optimisation model. In the implementation, a complete microigniter is formed by a single layer of Au, achieving an ultra-low ignition voltage of 2.1 V with an extremely low ignition resistance of 4 Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ahn J, Lee D (2013) Computational prediction of the thrust characteristics of a small thruster at low pressure condition. 49th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, p 3908

  • Bayt R (1999) Analysis, fabrication and testing of a MEMS-based micro propulsion system. Aerospace Computational Design Laboratory, Dept. of Aeronautics & Astronautics, Massachusetts Institute of Technology

  • Bruccoleri A, Leiter R, Drela M et al (2012) Experimental effects of nozzle geometry on flow efficiency at low reynolds numbers. J Propul Power 28:96–105

    Article  Google Scholar 

  • Cheah KH, Chin JK (2011) Performance improvement on MEMS micropropulsion system through a novel two-depth micronozzle design. Acta Astronaut 69:59–70

    Article  Google Scholar 

  • Cheah KH, Koh KS, Chiang CL et al (2011) Progress on development of Al2O3-SiO2 ceramic MEMS-based monopropellant micropropulsion system. 47th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, p 5923

  • Chen H, Zhang Y, Zhang M et al (2013) Performance prediction of conical nozzle using Navier–Stokes computation. 49th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, p 3733

  • Docker PT, Kinnell PK, Ward MCL (2004) Development of the one-step DRIE dry process for unconstrained fabrication of released MEMS devices. J Micromech Microeng 14:941–944

    Article  Google Scholar 

  • Esper J, Neeck S, Slavin J et al (2003) Nano/micro satellite constellations for earth and space science. Acta Astronaut 52:785–791

    Article  Google Scholar 

  • Hitt D, Zakrzwski C, Thomas M (2001) MEMS-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition. Smart Mater Struct 10:1163–1175

    Article  Google Scholar 

  • Köhler J, Bejhed J, Kratz H et al (2002) A hybrid cold gas microthruster system for spacecraft. Sens Actuators A 97–98:587–598

    Article  Google Scholar 

  • Lee J, Kim T (2013) MEMS solid propellant thruster array with micro membrane igniter. Sens Actuators A 190:52–60

    Article  Google Scholar 

  • Lee J, Kim K, Kwon S (2010) Design, fabrication, and testing of Mems solid propellant thruster array chip on glass wafer. Sens Actuators A 157:126–134

    Article  Google Scholar 

  • Lewis D Jr, Janson S, Cohen R (2000) Digital micropropulsion. Sens Actuators A 80:143–154

    Article  Google Scholar 

  • London A, Ayón A, Epstein A et al (2001) Microfabrication of a high pressure bipropellant rocket engine. Sens Actuators A 92:351–357

    Article  Google Scholar 

  • Louisos WF, Hitt DL (2011) Transient analysis of supersonic viscous flow in 3D micronozzles. 41st AIAA fluid dynamics conference and exhibit, p 3996

  • Sathiyanathan K, Lee R, Chesser H et al (2011) Solid propellant microthruster design for nanosatellite application. J Propul Power 27(6):1288–1294

    Article  Google Scholar 

  • Seo D, Lee J, Kwon S (2012) The development of the micro-solid propellant thruster array with the improved repeatability. J Micromech Microeng 22:094004

    Article  Google Scholar 

  • Shen Q, Yuan W, Li X et al (2013) A fully decoupled design method for MEMS microthruster based on orthogonal analysis. Transducers, pp 2353–2356

  • Shen Q, Yuan W, Li X et al (2014) An orthogonal analysis method for decoupling the nozzle geometrical parameters of microthrusters. Microsyst Technol, pp 1–10

  • Tanaka S, Kondo K, Habu H et al (2008) Test of B/Ti multilayer reactive igniters for a micro solid rocket array thruster. Sens Actuators A 144:361–366

    Article  Google Scholar 

  • Zhang KL, Chou SK, Ang SS (2004) Development of a solid propellant microthruster with chamber and nozzle etched on a wafer surface. J Micromech Microeng 14:785–792

    Article  Google Scholar 

  • Zhao X, Wei X, Shi Y (2002) Mathematical statistics. Science Publishing House, Beijing

    Google Scholar 

Download references

Acknowledgments

This research was sponsored by the Fundamental Research Funds for the Central Universities (Grant No. 3102014JC02010505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglong Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Q., Yuan, W., Xie, J. et al. A quantitative optimisation model for a horizontal MEMS solid propellant thruster with experimental verification. Microsyst Technol 22, 847–859 (2016). https://doi.org/10.1007/s00542-015-2486-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2486-7

Keywords

Navigation