Advertisement

Microsystem Technologies

, Volume 22, Issue 4, pp 823–830 | Cite as

Tunable MEMS piezoelectric energy harvesting device

  • Almudena RivadeneyraEmail author
  • Juan Manuel Soto-Rueda
  • Rosemary O’Keeffe
  • Jesús Banqueri
  • Nathan Jackson
  • Alan Mathewson
  • Juan A. López-Villanueva
Technical Paper

Abstract

This work is focused on low frequency (<300 Hz) vibrations due to the fact that many industrial and commercial devices operate at those frequencies. The aim of the present work is to model by numerical simulation a Si cantilever beam with an AlN piezoelectric layer concept that tunes its resonant frequency post-processing, while reducing the separation of the first two modes of resonance in order to broaden its quality factor and, therefore, to harvest more environmental energy. This paper investigates by numerical simulation the influence of perforating sections of the Si beam has on the resonant frequencies of the cantilever. The authors have found that the distance between these modes is decreased by 30 % when 0.002 mm3 is extracted in a specific location of the initial structure. This difference between modes can be reduced above 80 % if a volume of 0.004 mm3 in a specific part of the initial design is subtracted. In these conditions, the first mode is decreased about 20 % the initial value and the second mode about 60 %.

Keywords

Resonance Frequency Resonant Frequency Energy Harvesting Resonant Mode Ambient Vibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially funded by the Junta de Andalucía, Spain (Proyecto de Excelencia P10-TIC-5997), Research contract TECNOCAI (Ministry of Science and Technology, Spain) and the Collaborative Centre for Applied Nanotechnology (CCAN) as part of the Irish Government’s Strategy for Science Technology and Innovation 2006–2013.

References

  1. Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1CrossRefGoogle Scholar
  2. Choi D-H, Han C-H, Kim H-D, Yoon J-B (2011) Liquid-based electrostatic energy harvester with high sensitivity to human physical motion. Smart Mater Struct 20:125012CrossRefGoogle Scholar
  3. COMSOL Multiphysics (2008) Structural mechanics module. User’s Guide, Version 4.2Google Scholar
  4. COMSOL Multiphysics (2012) 4.3 User’s guide. COMSOLGoogle Scholar
  5. Elfrink R, Kamel TM, Goedbloed M, Matova S, Hohlfeld D, Van Andel Y, Van Schaijk R (2009) Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J Micromech Microeng 19(9):094005. doi: 10.1088/0960-1317/19/9/094005 CrossRefGoogle Scholar
  6. Emam M (2008) Finite element analysis of composite piezoelectric beam using comsol. M.S. thesis, Drexel University, PhiladelphiaGoogle Scholar
  7. Ericka M, Vasic D, Costa F, Poulain G (2005) Predictive energy harvesting from mechanical vibration using a circular piezoelectric membrane. In: IEEE Ultrasonics Symposium, vol 2, pp 946–949Google Scholar
  8. Horowitz S, Nishida T, Cattafesta L, Sheplak M (2007) Development of a micromachined piezoelectric microphone for aeroacoustics applications. J Acoust Soc Am 122:3428–3436CrossRefGoogle Scholar
  9. Jackson N, O’Keeffe R, O’Leary R, O’Neill M, Waldron F, Mathewson A (2012) A diaphragm based piezoelectric AlN film quality test structure. In: Microelectronic test structures (ICMTS), 2012 IEEE international conference. IEEE, pp 50–54Google Scholar
  10. Jackson N, O’Keeffe R, Waldron F, O’Neill M, Mathewson A (2013) Influence of aluminum nitride crystal orientation on MEMS energy harvesting device performance. J Micromech Microeng 23:075014CrossRefGoogle Scholar
  11. Jackson N, O’Keeffe R, Waldron F, O’Neill M, Mathewson A (2014) Evaluation of low-acceleration MEMS piezoelectric energy harvesting devices. Microsyst Technol 20:671–680CrossRefGoogle Scholar
  12. Kong LB, Li T, Hng HH, Boey F, Zhang T, Li S (2014) Waste mechanical energy harvesting (I): piezoelectric effect. In: Waste energy harvesting. Springer, Berlin, Heidelberg, pp 19–133Google Scholar
  13. Mehraeen S, Jagannathan S, Corzine K (2008) Energy harvesting using piezoelectric materials and high voltage scavenging circuitry. In: IEEE international conference on Industrial technology, 2008 (ICIT 2008). IEEE, pp 1–8Google Scholar
  14. Meninger S, Mur-Miranda JO, Amirtharajah R, Chandrakasan AP, Lang JH (2001) Vibration-to-electric energy conversion. Very Larg Scale Integr (VLSI) Syst IEEE Trans 9:64–76CrossRefGoogle Scholar
  15. Miller LM, Halvorsen E, Dong T, Wright PK (2011) Modeling and experimental verification of low-frequency MEMS energy harvesting from ambient vibrations. J Micromech Microeng 21:045029CrossRefGoogle Scholar
  16. O’Keeffe R, Jackson N, Waldron F, O’Niell M, McCarthy K, Mathewson A (2013) Investigation into modelling power output for MEMS energy harvesting devices using COMSOL Multiphysics R. In: 14th international conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems (EuroSimE), 2013. IEEE, pp 1–6Google Scholar
  17. Rivadeneyra A, Lopez-Villanueva JA, O’Keeffe R, Jackson N, O’Neill M, Mathewson A (2012) Frequency response of variants of a cantilever beam. In: International conference on synthesis, modeling, analysis and simulation methods and applications to circuit design (SMACD). IEEE, pp 177–180Google Scholar
  18. Roundy S et al (2005) Improving power output for vibration-based energy scavengers. Pervasive Comput IEEE 4:28–36CrossRefGoogle Scholar
  19. Zhu D, Tudor M, Beeby S (2010) Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas Sci Technol 21:022001CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Almudena Rivadeneyra
    • 1
    Email author
  • Juan Manuel Soto-Rueda
    • 1
  • Rosemary O’Keeffe
    • 2
  • Jesús Banqueri
    • 1
  • Nathan Jackson
    • 2
  • Alan Mathewson
    • 2
  • Juan A. López-Villanueva
    • 1
  1. 1.ECsens, CITIC-UGR, Departamento de Electrónica y Tecnología de ComputadoresUniversidad de GranadaGranadaSpain
  2. 2.Microsystems, Tyndall National InstituteUniversity College CorkCorkIreland

Personalised recommendations