Skip to main content
Log in

Three-dimensional simulation of surface topography evolution in the Bosch process by a level set method

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A deep reactive ion etching (DRIE) process (Bosch process) is used extensively in the fabrication of microelectromechanical systems (MEMS). Modeling and simulation studies have helped improve our understanding and process design. The Bosch process consists of multiple cycles of alternating etching and deposition steps. Based on a narrow band level set method, by integrating etching simulation and deposition simulation modules, a simulation system is proposed for three-dimensional (3-D) simulation of the Bosch process with arbitrarily complex mask shapes. To verify the simulation system, a series of simulations and experiments have been performed. The simulation results are in good agreement with the experiments. The method may be used to optimize the practical Bosch process and to design and control the profile of high-aspect ratio microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adalsteinsson D, Sethian JA (1995a) A level set approach to a unified model for etching, deposition, and lithography II: three-dimensional simulations. J Comput Phys 122:348–366

    Article  MathSciNet  MATH  Google Scholar 

  • Adalsteinsson D, Sethian JA (1995b) A fast level set method for propagating interfaces. J Comput Phys 118:269–277

    Article  MathSciNet  MATH  Google Scholar 

  • Adalsteinsson D, Sethian JA (1999) The fast construction of extension velocities in level set methods. J Comput Phys 148:2–22

    Article  MathSciNet  MATH  Google Scholar 

  • Chen KS, Ayón A, Zhang X, Spearing SM (2002) Effect of process parameters on the surface morphology and mechanical performance of silicon structures after deep reactive ion etching (DRIE). J Microelectromech Syst 11:264–275

    Article  MATH  Google Scholar 

  • Chen B, Zhou Z-F, Li X-Q, Huang Q-A (2013) Simulation of the Bosch process with the narrow band level set method. In: Proceedings 12th IEEE Sensors Conference, pp 234–236

  • Chopp DL (1993) Computing minimal surfaces via level set curvature flow. J Comput Phys 106:77–91

    Article  MathSciNet  MATH  Google Scholar 

  • Ertl O, Selberherr S (2010) Three-dimensional level set based Bosch process simulations using ray tracing for flux calculation. Microelectron Eng 87:20–29

    Article  Google Scholar 

  • Gottscho RA, Jurgensen CW, Vitkavage DJ (1992) Microscopic uniformity in plasma etching. J Vac Sci Technol B 10:2133–2147

    Article  Google Scholar 

  • Jewett RE, Hagouel PI, Neureuther AR, Duzer TV (1977) Line-profile resist development simulation techniques. Polym Eng Sci 17:381–384

    Article  Google Scholar 

  • Kakinaga T, Tabata O, Baba N, Isono Y, Korvink JG, Ehrmann KH (2004) Simulation of anisotropic chemical etching of single crystalline silicon using cellular-automata. IEEJ Trans Sens Micromach 124:7–13

    Article  Google Scholar 

  • Läermer F, Schilp A (1994) A method of anisotropically etching silicon, US Patent Specification 5501893, German Patent Specification DE4241045

  • Osher S, Sethian JA (1988) Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Radjenović B, Radmilović-Radjenović M (2012) An approach to the three-dimensional simulation of the Bosch process. J Mater Res 27:793–798

    Article  Google Scholar 

  • Scheckler EW, Neureuther AR (1994) Models and algorithms for three-dimensional topography simulation with SAMPLE-3D, IEEE Trans. Comput Aided Des Integr Circuit Syst 13:219–229

    Article  Google Scholar 

  • Sethian JA, Adalsteinsson D (1997) An overview of level set methods for etching, deposition, and lithography development, IEEE Trans. Semicond Manuf 10:167–184

    Article  Google Scholar 

  • Shaqfeh ESG, Jurgensen CW (1989) Simulation of reactive ion etching pattern transfer. J Appl Phys 66:4664–4675

    Article  Google Scholar 

  • Zhang J, Huang Q-A, Li W-H (2005) An ICP etch model based on time multiplexed deep etching. In: Proceedings SPIE, vol 6032, p. 60320G1–60320G8

  • Zhou R, Zhang H, Hao Y, Wang Y (2004) Simulation of the Bosch process with a string-cell hybrid method. J Micromech Microeng 14:851–858

    Article  Google Scholar 

  • Zhou Z-F, Huang Q-A, Li W-H, Deng W (2007) A cellular automaton based simulator for silicon anisotropic etching processes considering high index planes. J Micromech Microeng 17:38–49

    Article  Google Scholar 

  • Zhou Z-F, Huang Q-A, Li W-H (2009) Modeling and simulations of anisotropic etching of silicon in alkaline solutions with experimental verification. J Electrochem Soc 156:29–37

    Article  Google Scholar 

Download references

Acknowledgments

This project is partly supported by the National S&T Major Project under contract no. 2011ZX02507-001-003 and by the Science Foundation of Jiangsu Province under contract no. DZXX-149-092.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-An Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XQ., Zhou, ZF., Li, WH. et al. Three-dimensional simulation of surface topography evolution in the Bosch process by a level set method. Microsyst Technol 21, 1587–1593 (2015). https://doi.org/10.1007/s00542-014-2321-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2321-6

Keywords

Navigation