Microsystem Technologies

, Volume 21, Issue 4, pp 791–800 | Cite as

Design, modeling and performance analysis of carbon nanotube with DNA strands as biosensor for prostate cancer

  • B. N. ShobhaEmail author
  • N. J. R. Muniraj
Technical Paper


Prostate cancer which causes panic among human beings due to deaths occurring when not detected in initial stages demands a means of detection and diagnosis. Biosensors play an important role in detection of cancer cells or molecules in blood samples or urine samples using DNA strands. In this paper, we analyze properties of Single Wall Carbon Nano Tube (SWCNT) and Multi Wall Carbon Nano Tube (MWCNT) of 30 nm length and semiconducting nature. SWCNT is suitable for biosensor applications due to its high current carrying capability. Prostate Specific Antigen present in blood sample is detected using DNA strands, in this work three different DNA strands are analyzed for its performance. Surface charge density is 23.4656 M for dsDNA strand. The simulation tool Monte Carlo from is used for validation of results.


Prostate Cancer Prostate Specific Antigen Surface Charge Density Peptide Nucleic Acid Detect Prostate Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Besteman K, Lee J, Wiertz FG, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3(6):727–730CrossRefGoogle Scholar
  2. Bulyha A, Heitzinger C (2009) Monte Carlo DNA Simulator. University of Vienna and Purdue University. doi: 10.4231/D3BZ6176M
  3. Cai H, Xu Y, He P, Fang YZ (2003) Indicator free DNA hybridization detection by impedance measurement based on the DNA-doped conducting polymer film formed on the carbon nanotube modified electrode. Electroanalysis 15(23–24):1864–1870Google Scholar
  4. Cheng Y, Xiong P, Yun CS, Strouse GF, Zheng JP, Yang RS, Wang ZL (2008) Mechanism and optimization of pH sensing using SnO2 nanobelt field effect transistors. Nano Lett 8:4179–4184Google Scholar
  5. Davis JJ, Coleman KS, Azamian BR, Bagshaw CB, Green MLH (2003) Chemical and biochemical sensing with modified single walled carbon nanotubes. Chemistry 9(16):3732–3739CrossRefGoogle Scholar
  6. Gooding JJJ (2002) Electrochemical DNA hybridization biosensors. Electroanalysis 14(17):1149–1156CrossRefGoogle Scholar
  7. Hallick RB (2013) DNA Structure. Accessed 21 Apr 2013
  8. Hsiao C-Y, Lin C-H, Hung C-H, Su C-J, Lo Y-R, Lee C-C, Lin H-C, Ko F-H, Huang T-Y, Yang Y-S (2009) Biosens Bioelectron 24:1223Google Scholar
  9. Koehne J, Chen H, Li J, Cassell AM, Cassell AM, Ye Q, Ng HT, Han J, Meyyappan M (2003) Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays. Nanotechnology 14:1239CrossRefGoogle Scholar
  10. Lilja H, Ulmert D, Vickers AJ (2008) Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat Rev Cancer 8:268–278CrossRefGoogle Scholar
  11. Lin Y, Lu F, Tu Y, Ren Z (2004) Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett 4(2):191–195CrossRefGoogle Scholar
  12. Lin C-H, Hsiao C-Y, Hung C-H, Lo Y-R, Lee C-C, Su C-J, Lin H-C, Ko F-H, Huang T-Y, Yang Y-S (2008) Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor. Chem Commun (Camb) (44):5749–5751. doi: 10.1039/b812968a
  13. Moore KL, Dalley AF, Agur AMR, Tank PW, Gest TR (1999) Clinically oriented anatomy. Lippincott Williams Wilkins, BaltimoreGoogle Scholar
  14. Patolsky F, Zheng G, Lieber GM (2006) Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat Protoc 1(4):1711–1724Google Scholar
  15. Pingang H, Ying X, Yuzhi F (2006a) Application of carbon nanotubes in electrochemical DNA biosensor. Microchim Acta 152:175–186CrossRefGoogle Scholar
  16. Rubianes MD, Rivas GA (2005) Enzymatic biosensors based on carbon nanotubes paste electrodes. Electroanalysis 17(1):73–78CrossRefGoogle Scholar
  17. Shen G, Chen D (2009) One-dimensional nanostructures and devices of II–V group semiconductors. Nanoscale Res Lett 4(8):779–788CrossRefGoogle Scholar
  18. Stenman UH, Leinonen J, Zhang W-H, Finne P (1999) Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Semin Cancer Biol 9:83–93Google Scholar
  19. Tang X, Bansaruntip S, Nakayama N, Yenilmez E, Chang Y-L, Wang Q (2006) Carbon nanotube DNA sensor and sensing mechanism. Nano Lett 6(8):1632–1636Google Scholar
  20. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1):7–14CrossRefGoogle Scholar
  21. Wang J, Musameh M (2003) Enzyme-dispersed carbon-nanotube electrodes: a needle microsensor for monitoring glucose. Analyst 128(11):1382–1385CrossRefGoogle Scholar
  22. Wang J, Kawdea A, Musameha M (2003) Carbon-nanotube-modified glassy carbon electrodes for amplified label-free electrochemical detection of DNA hybridization. Analyst 128(7):912–916CrossRefGoogle Scholar
  23. Wang J, Liu G, Jan MR (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126(10):3010–3011Google Scholar
  24. Wu C-C, Pan T-M, Wu C-S, Yen L-C, Chuang C-K, Pang S-T, Yang Y-S, Ko F-H (2012) Label-free detection of prostate specific antigen using a silicon nanobelt field-effect transistor. Int J Electrochem Sci 7:4432–4442Google Scholar
  25. Zhang M, Cheng F, Cai Z, Yao Z (2010) Glucose biosensor based on highly dispersed Au nanoparticles supported on palladium nanowire array. Int J Electrochem Sci 5:1026–1031Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Karpagam UniversityCoimbatoreIndia
  2. 2.TSITWCoimbatoreIndia

Personalised recommendations