Skip to main content
Log in

Fabrication and characterization of MEMS piezoelectric synthetic jet actuators with bulk-micromachined PZT thick film

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, we have developed a fabrication process for micro synthetic jet actuators (SJA) by bonding a high-quality Pb (Zr,Ti) O3 (PZT) ceramic wafer to a silicon wafer using epoxy resin at low temperature (<150 °C). The bulk-PZT was lapped and polished to be PZT thick film by chemical mechanical polishing (CMP) method, and patterned by wet-etching method. The cavity and orifice of SJA were formed by inductive coupled plasma etching (ICP) method. A MEMS piezoelectric SJA was then completed and characterized, including the performance of the PZT thick film. While the dimension of bonded PZT thick film is about 6,000 × 6,000 × 100 μm, and the dimension of Si membrane is about 1,000 × 1,000 × 20 μm. The experimental results show that the maximum center amplitude of PZT-Si diaphragm is 15.05 μm at Vp-p of 90 V and the resonant frequency of 5 kHz, and the maximum jet velocity is higher than 11 m/s. This novel process has great potential to fabricate MEMS piezoelectric synthetic jet actuators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aktakka EE et al (2013) Wafer-level integration of high-quality bulk piezoelectric ceramics on silicon. Electron Devices, IEEE Trans 60(6):2022–2030

    Article  Google Scholar 

  • Cao Z et al (2011) Design and fabrication of PZT microcantilevers with freestanding structure. Microsyst Technol 17(8):1393–1400

    Article  Google Scholar 

  • Cattafesta LN III, Sheplak M (2011) Actuators for active flow control. Annu Rev Fluid Mech 43:247–272

    Article  Google Scholar 

  • Chaudhari M et al (2009) Frequency response of a synthetic jet cavity. Exp Thermal Fluid Sci 33(3):439–448

    Article  Google Scholar 

  • Coe DJ (2002) Fabrication technology approaches to micromachined synthetic jets. Georgia Institute of Technology

  • Ezhilvalavan S, Samper VD (2005) Ferroelectric properties of wet-chemical patterned PbZr0 52Ti0 48O3 films. Appl Phys Lett 86(7):072901

    Article  Google Scholar 

  • Gimeno L et al (2010) Synthetic jets based on micro magneto mechanical systems for aerodynamic flow control. J Micromech Microeng 20(7):075004

    Article  MathSciNet  Google Scholar 

  • Holman R et al (2003) Interaction of adjacent synthetic jets in an airfoil separation control application. AIAA paper 3709:2003

    Google Scholar 

  • Janson SW, Helvajian H, Breuer K (1999) MEMS, microengineering and aerospace systems. AIAA paper 3802:1999

  • Kumar S et al. (1999) MEMS based transducers for boundary layer control. Micro electro mechanical systems. 12th IEEE international conference on MEMS’99, IEEE

  • Lee C et al (2003) A piezoelectrically actuated micro synthetic jet for active flow control. Sens Actuators A 108(1):168–174

    Article  Google Scholar 

  • Lockerby DA, Carpenter PW (2004) Modeling and design of microjet actuators. AIAA J 42(2):220–227

    Article  Google Scholar 

  • Luo Z-B, Xia Z-X (2005) A novel valve-less synthetic-jet-based micro-pump. Sens Actuators A 122(1):131–140

    Article  MathSciNet  Google Scholar 

  • Mallinson S et al (2003) Numerical simulation of micro-fabricated zero mass-flux jet actuators. Sens Actuators A 105(3):229–236

    Article  Google Scholar 

  • Parviz BA et al (2005) Electrostatically driven synthetic microjet arrays as a propulsion method for micro flight. Microsyst Technol 11(11):1214–1222

    Article  Google Scholar 

  • Smith BL, Glezer A (1998) The formation and evolution of synthetic jets. Phys Fluids 10(9):2281–2297 (1994-present)

    Article  MATH  MathSciNet  Google Scholar 

  • Smith DR et al (1998) Modification of lifting body aerodynamics using synthetic jet actuators. AIAA paper 209:1998

    Google Scholar 

  • Tanaka K et al (2006) Wafer bonding of lead zirconate titanate to Si using an intermediate gold layer for microdevice application. J Micromech Microeng 16(4):815

    Article  Google Scholar 

  • Tang G et al (2012) Fabrication and analysis of high-performance piezoelectric MEMS generators. J Micromech Microeng 22(6):065017

    Article  Google Scholar 

  • Xu X-H et al (2007) Design, fabrication and characterization of a bulk-PZT-actuated MEMS deformable mirror. J Micromech Microeng 17(12):2439

    Article  Google Scholar 

  • Zheng K et al (2004) A novel wet etching process of Pb (Zr, Ti) O3 thin films for applications in microelectromechanical system. Jpn J Appl Phys 43(6S):3934

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of China (no 51105317).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shushan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Ma, B., Deng, J. et al. Fabrication and characterization of MEMS piezoelectric synthetic jet actuators with bulk-micromachined PZT thick film. Microsyst Technol 21, 1053–1059 (2015). https://doi.org/10.1007/s00542-014-2278-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2278-5

Keywords

Navigation