Skip to main content
Log in

Multi field modeling of a microelectromechanical speaker system with electrostatic driving principle

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The need for computer modeling tools capable of precisely simulating multi-field interactions is increasing. The accurate modeling of an electrostatically actuated Micro-Electro-Mechanical-Systems speaker results in a system of coupled partial differential equations (PDEs), describing the interactions between electrostatic, mechanical and acoustic fields. A finite element (FE) method is applied to solve the PDEs efficiently and accurately. In the first part of this paper, we present the driving technology of an electrostatic actuated Micro-Electro-Mechanical-Systems speaker, where the electrostatic mechanical coupling is realized with reduced order electro mechanical transducer elements. The electrostatic attracting force is derived from the capacity to gap relation of our device. In a second investigation, we focus on generation of the generated sound including open domain characteristics and propagation region optimization. The sound pressure level is computed with Kirchhoff Helmholtz integral as well as with FEM by using CFS++. We use the Kirchhoff Helmholtz model to characterize the interactions of multiple speaker cells in arrays and the FE tool for single speaker cell investigations. At the acoustic FE model, the focus is on mesh generation and optimization of the propagation region using non-conforming grids (Mortar FEM) and in addition at the boundary region to model open domain characteristics. We apply a recently developed perfectly matched layer technique, which allows us to truncate the acoustic propagation domain with open domain characteristics. Finally, we present an optimization method taking advantage of stress induced self-raising realized with various merged layers with different intrinsic pre-stress. The buckling back plate concept can be compared to bimetal characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • ANSYS (2009a) Theory reference for the mechanical apdl and mechanical applications

  • ANSYS (2009b) Element reference

  • Bai MR, Liu CY, Chen RL (2008) Optimization of microspeaker diaphragm pattern using combined finite element-lumped parameter models. Magn IEEE Trans On 44(8):2049

    Article  Google Scholar 

  • Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phy 114:185–200

    Article  MATH  MathSciNet  Google Scholar 

  • Brueckner J, Dudek R, Rzepka S, Michel B (2009) An integrated experimental and theoretical approach to evaluate si strengh dependent on the processing history. ASME 10(IPACK2009), 7

  • Cho H, Ur S, Yoon M, Yi S (2008) Dependence of material properties on piezoelectric microspeakers with AlN thin film. In: Nano/Micro Engineered and Molecular Systems, 2008. NEMS 2008. 3rd IEEE International Conference on (IEEE), pp 637–640

  • Cohen Y, Lewin D, Kaplan S (2010a) Apperatus and methods for generating pressure waves. US Patent 12/301,951, Jan 7 2010. ISBN US2010/002900 A1

  • Cohen Y, Lewin D, Kaplan S, Simon MB, Andreas HE, Sromin A (2010b) Digital speaker apparatus. US Patent US 2010/0316242 A1, 21 May 2010. ISBN US 2010/0316242 A1

  • Cohen Y, Lewin D, Kaplan S (2010c) Volume and tone control in direct digital speakers. US Patent 12/301,954. ISBN US 2010/0008521 A1

  • Cohen Y, Kaplan S, Lewin D, Sromin A, Wool Y (2010d) Direct digital speaker apparatus having a desired directivity pattern. US Patent 12/601,427. ISBN US 2010/0166242 A1

  • Cohen Y, Lewin D, Kaplan S, Simon MB, Andreas HE (2011) Electrostatic parallel plate actuators who’s moving elements are driven only by electrostatic force and methods useful in conjunction therewith. US Patent WO 2011/111042 A1. ISBN US20130076275 A1

  • Dehè A (2013) Micro electrical mechanical system with bending deflection of backplate structure. US Patent 13/230,264. ISBN US 20130062710A1

  • Diamond BM, Matthew AZ, Vandemeer JE, Gabriel KJ (2010) Proof-mass with supporting structure on integrated circuit-mems platform. US Patent 11/640,345. ISBN US 7640805 B2

  • Diamond BM, Matthew AZ (2011) Monolithic mems and integrated circuit device having a barrier and method of fabricating the same. US Patent 11/446,397. ISBN US 7863714 B2

  • Füldner M (2004) Modellierung und herstellung kapazitiver mikrofone in bicmos-technologie. Ph.D. thesis, Universität Erlangen-Nürnberg

  • Gabriel KJ, Zhu X (2006) Process for forming and acoustically connecting structures on substrate. US Patent. ISBN US 7049051 B2

  • Gerson Y, Krylov S, Ilic B, Schreiber D (2011) Design considerations of large-displacement multiscalable micro actuator with serially connected bistable elements. Finite Elem Anal Des 49:58–69

    Article  Google Scholar 

  • Glacer C (2011) Reversible akustische wandler in mems technologie. Master’s thesis, University Bremen

  • Glacer C, Deh A, Nawaz M, Laur R (2013) Reversible acoustical transducers in mems technology. In: Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2013 Symposium on (IEEE), pp 1–4

  • Glacer C, Laur R, Dehè A, Tumpold D (2013) Capacitive out of plane large stroke mems structure. Paper presented at the Conference Proceedings PRIME 2013 9th Conference on Ph. D. Research in Microelectronics and Electronics, Villach, 2013

  • Grote MJ, Sim I (2011) Local nonreflecting boundary condition for time-dependent multiple scattering. J Comput Phy 230(8): 3135–3154

    Article  MATH  MathSciNet  Google Scholar 

  • Hibbeler RC (2005) Technische Mechanik 2. In: Festigkeitslehre. vol 5. Pearson Studium, Louisiana

  • Hüppe A, Kaltenbacher M (2012) Spectral finite elements for computational aeroacoustics using acoustic perturbation equation. J Comput Acoust 20(2):13

    Article  Google Scholar 

  • Kaltenbacher M (2007) Numerical Simulation of Mechatronic Sensors and Actuators. In: 2nd edn. Springer, Berlin

  • Kaltenbacher B, Kaltenbacher M, Sim I (2013) A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics. J Comput Phys 235:407–422

    Article  MathSciNet  Google Scholar 

  • Kim H, Astle AA, Najafi K, Bernal LP, Washabaugh PD, Cheng F (2005) Bi-directional electrostatic microspeaker with two large-deflection flexible membranes actuated by single/dual electrodes. In: Sensors, (IEEE 2005), p 4

  • Kim HJ, Koo K, Lee SQ, Park KH, Kim J (2009) High performance piezoelectric microspeakers and thin speaker array system. ETRI J 31(6):680–687

    Article  Google Scholar 

  • Ko SC, Kim YC, Lee SS, Choi SH, Kim SR (2003) Micromachined piezoelectric membrane acoustic device. Sens Actuators A Phys 103(1):134

    Google Scholar 

  • Krylov S, Ilic BR, Schreiber D, Seretensky S (2008) The pull-in behavior of electrostatically actuated bistable microstructures. J Micromech Microeng 18:20

    Article  Google Scholar 

  • Lee CM, Hwang SM (2011a) Development of advanced rectangular microspeakers used for wide liquid-crystal display mobile phones. J Appl Phys 109(7):07E504

    Google Scholar 

  • Lee CM, Hwang SM (2011b) Optimization of SPL and THD performance of microspeakers considering coupling effects. Magn IEEE Transac 47(5):934–937

    Article  Google Scholar 

  • Lee SS, White RM (1998) Piezoelectric cantilever voltage-to-frequency converter. Sens Actuators A Phys 71(1):153–157

    Article  Google Scholar 

  • O’Mahony C, Duane R, Hill M, Mathewson A (2005) Low-voltage micromechanical test structure for measurement of residual charge in dielectrics. eElectron Lett 41(7):2

    Google Scholar 

  • Shahosseini I, Lefeuvre E, Woytasik M, Moulin J, Leroux X, Edmond S, Dufour-Gergam E, Bosseboeuf A, Lemarquand G, Lemarquand V (2010) Towards high fidelity high efficiency mems microspeakers. In: Sensors, IEEE, pp 2426–2430

  • Shahosseini I, Lefeuvre E, Moulin J, Martincic E, Woytasik M, Lemarquand G (2013) Optimization and microfabrication of high performance silicon-based mems microspeaker. In: Sensors, IEEE, pp 1530–1542

  • Triebenbacher S, Kaltenbacher M, Flemisch B, Wohlmuth B (2010) Applications of the mortar finite element method in vibroacoustics and flow induced noise computations. Acta Acust United Acust 96:536–553

    Article  Google Scholar 

  • Triebenbacher S (2012) Nichtkonforme gitter für die numerische simulation von aeroakustik- und vibroakustikproblemen. Ph.D. thesis, Alpen-Adria-Universität Klagenfurt

  • Tumpold D (2013) Modeling Methods for CMOS MEMS Speaker using Finite Element Method, vol 1. AV Akademiker Verlag, Saarbrücken

  • Tumpold D, Kaltenbacher M (2013) Modeling methods of mems speaker devices with electrostatic driving principle. Paper presented at the ANSYS Conference & 31. CADFEM Users, Mannheim Germany, 2013

  • Tumpold D, Kaltenbacher M, Glacer C, Nawaz M, Dehè A (2013) Modeling methods of MEMS micro-speaker, with capacitive working principle. Paper presented at the SPIE Microtechnologies, Grenoble, 2013

  • Yi S, Ur SC, Kim ES (2009) Performance of packaged piezoelectric microspeakers depending on the material properties. In: Micro Electro Mechanical Systems, 2009. MEMS 2009. IEEE 22nd International Conference on. (IEEE), pp 765–768

  • Zhang WM, Meng G, Chen D (2007) Stability, nonlinearity and reliability of electrostatically actuated mems devices. Sensors 7:760–796

    Article  Google Scholar 

  • Zhu X, Ciferno PA (2005) Ultrathin form factor mems microphones and microspeaker. US Patent 10/701,860. ISBN US 6936524 B2

Download references

Acknowledgments

This project has been supported within the COMET—Competence Centers for Excellent Technologies Programs by BMVIT, MBWFJ and the federal provinces of Carinthia and Styria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Tumpold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tumpold, D., Kaltenbacher, M., Glacer, C. et al. Multi field modeling of a microelectromechanical speaker system with electrostatic driving principle. Microsyst Technol 20, 995–1006 (2014). https://doi.org/10.1007/s00542-014-2102-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2102-2

Keywords

Navigation