Microsystem Technologies

, Volume 20, Issue 4–5, pp 919–925 | Cite as

Evaluation of bioinspired functional surfaces for nanoparticle filtering

  • Sebastian BuschEmail author
  • Manuel Ketterer
  • Xenia Vinzenz
  • Christian Hoffmann
  • Katrin Schmitt
  • Jürgen Wöllenstein
Technical Paper


We present the development of a novel integrated device for airborne nanoparticle filtering with bioinspired nanoscale functionality. The underlying idea is to investigate the principle of adherent surfaces, e.g. pollen, as a biological model and transfer this functionality into a technology using functionalized microstructured surfaces. This might offer an efficient filtering method for nanoscale airborne particles without the limitations in gas permeability of conventional filters. We investigated the different pollen species for their structural and biochemical surface properties to achieve bioinspired surface functionality on silicon surfaces. The resulting conical structures have sizes from 4 to 20 μm. Depending on structure sizes, the adhesive properties of the surfaces towards aerosol particles could be directly influenced. The surfaces were tested in a demonstrator setup and the collection efficiency visually determined.


Pollen Surface Collection Efficiency Filter Element Pollen Species Functional Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge financial support from the German Research Foundation under grant number WO 1698/1-1. We thank Marie-Luise Bauersfeld and Carolin Peter, Fraunhofer IPM, for their assistance with photolithography and dry etching.


  1. Behrendt H, Becker WM (2001) Localization, release and bioavailability of pollen allergens: the influence of environmental factors. Curr Opin Immunol 13–6:709–715CrossRefGoogle Scholar
  2. Chehregani A, Kouhkan F (2008) Diesel exhaust particles and allergenicity of pollen grains of Lilium martagon. Ecotoxicol Environ Saf 69(3):568–573CrossRefGoogle Scholar
  3. Chehregani A, Majde A, Moin M, Gholami M, Ali Shariatzadeh M, Nassiri H (2004) Increasing allergy potency of Zinnia pollen grains in polluted areas. Ecotoxicol Environ Saf 58(2):267–272CrossRefGoogle Scholar
  4. Gruijthuijsen YK et al (2006) Nitration enhances the allergenic potential of proteins. Int Arch Allergy Immunol 141:265–275CrossRefGoogle Scholar
  5. Hajjam A, Wilson JC, Pourkamali S (2011) Individual air-borne particle mass measurement using high-frequency micromechanical resonators. IEEE Sens J 11(11):2883–2890. doi: 10.1109/JSEN.2011.2147301 Google Scholar
  6. Heeb NV et al (2005) Secondary emissions risk assessment of diesel particulate traps for heavy duty applications. SAE Technical Paper Series 26:014Google Scholar
  7. Heizmann P, Luu DT, Dumas C (2000) Pollen-stigma adhesion in the Brassicaceae. Ann Bot 85:23–27CrossRefGoogle Scholar
  8. Hesse M (1980a) Ultrastruktur und Entwicklungsgeschichte des Pollenkitts von Euphorbia cyparissias, E. palustris und Mercurialis perennis (Euphorbiaceae). Plant Syst Evol 135:253–263CrossRefGoogle Scholar
  9. Hesse M (1980b) Entwicklungsgeschichte und Ultrastruktur von Pollenkitt und Exine bei nahe verwandten entomophilen und anemophilen Angiospermensippen der Alismataceae, Liliaceae, Juncaceae, Cyperaceae, Poaceae und Araceae. Plant Syst Evol 134:229–267CrossRefGoogle Scholar
  10. Hesse M (1981) The fine structure of the exine in relation to tile stickiness of angiosperm pollen. Rev Palaeobot Palynol 35:81–92CrossRefGoogle Scholar
  11. Luu D-T, Heizmann P, Dumas C (1997) Pollen-stigma adhesion in kale 1 s not dependent on the self-(in) compatibility genotype. Plant Physiol 115:1221–1230CrossRefGoogle Scholar
  12. Luu D-T, Marty-Mazars D, Trick M, Dumas C, Heizmanna P (1999) Pollen–stigma adhesion in brassica spp involves SLG and SLR1 glycoproteins. Plant Cell 11:251–262Google Scholar
  13. Murphy DJ (2006) The extracellular pollen coat in members of the Brassicaceae: composition, biosynthesis, and functions in pollination. Protoplasma 228:31–39CrossRefGoogle Scholar
  14. Pacini E, Hesse M (2005) Pollenkitt-its composition, forms and functions. Flora 200:399–415CrossRefGoogle Scholar
  15. Vinzenz X, Hüger E, Himmerlich M, Krischok S, Busch S, Wöllenstein J, Hoffmann C (2012) Preparation and characterization of poly(l-histidine)/poly(l-glutamic acid) multilayer on silicon with nanometer-sized surface structures. J Colloid Interface Sci 386:252–259CrossRefGoogle Scholar
  16. Wasisto HS, Merzsch S, Waag A, Uhde E, Salthammer T, Peiner E (2012) Airborne engineered nanoparticle mass sensor based on a silicon resonant cantilever. Sens Actuators B Chem (in press). doi: 10.1016/j.snb.2012.04.003
  17. Zinkl GM, Zwiebel BI, Grier DG, Preuss D (1999) Pollen-stigma adhesion in Arabidopsis: a species-specific interaction mediated by lipophilic molecules in the pollen exine. Development 126:5431–5440Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sebastian Busch
    • 1
    Email author
  • Manuel Ketterer
    • 1
  • Xenia Vinzenz
    • 2
  • Christian Hoffmann
    • 2
  • Katrin Schmitt
    • 3
  • Jürgen Wöllenstein
    • 1
    • 3
  1. 1.Department of Microsystems Engineering IMTEKUniversity of FreiburgFreiburgGermany
  2. 2.Institute for Bioprocessing and Analytical Measurement TechniquesHeilbad HeiligenstadtGermany
  3. 3.Fraunhofer Institute for Physical Measurement TechniquesFreiburgGermany

Personalised recommendations