Microsystem Technologies

, Volume 21, Issue 3, pp 669–674 | Cite as

Oxidized bridges technology for suspended MEMS fabrication using standard silicon wafer

  • A. Postnikov
  • O. V. Morozov
  • I. I. Amirov
Technical Paper


This paper presents a new method for electrically isolating released single crystal silicon MEMS structures. The technology employees double-side processing deep reactive ion etching to obtain functional high aspect ratio micromechanical structures and deep silicon oxidizing to isolate them from bulk silicon. Applicability of the technology to MEMS design was demonstrated with fabrication of the monolithic integrated bulk micromachined comb drive.


Trench Electrical Isolation Comb Drive Substrate Bias Voltage Bulk Micromachining 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was performed at Facilities Sharing Center “Micro- and Nanostructures Diagnostics” and is supported by Ministry of Science and Education of Russian Federation.


  1. Arnold JC, Sawin HH (1991) Charging of pattern features during plasma etching. J Appl Phys 70(10):5314–5317 doi: 10.1063/1.350241 CrossRefGoogle Scholar
  2. Bayiati P, Tserepi A, Gogolides E, Misiakos K (2004) Selective plasma-induced deposition of fluorocarbon films on metal surfaces for actuation in microfluidics. J Vac Sci Technol A 22(4):1546–1551. doi: 10.1116/1.1764815 Google Scholar
  3. Blauw MA, Zijlstra T, van der Drift E (2001) Balancing the etching and passivation in time-multiplexed dry etching of silicon. J Vac Sci Technol B 19:2930–2934CrossRefGoogle Scholar
  4. Brosnihan T, Bustillo J, Pisano A, Howe R (1997) Embedded interconnect and electrical isolation for high-aspect ratio, soi inertial instruments. In: Proceeding of international conference on solid state sensors and actuators, TRANSDUCERS 97, Chicago, pp 637–640Google Scholar
  5. Cowen A, Hames G, Monk D, Wilcenski S, Hardy B (2011) Soimumps design handbook., revision 8.0
  6. Craigie C, Sheehan T, Johnson V, Burkett S, Moll A, Knowlton W (2002) Polymer thickness effects on bosch etch profiles. J Vac Sci Technol B 20(6):2229–2232. doi: 10.1116/1.1515910 CrossRefGoogle Scholar
  7. Docker PT, Kinnell PK, Ward MCL (2004) Development of the one-step drie dry process for unconstrained fabrication of released mems devices. J Micromech Microeng 14:941–944CrossRefGoogle Scholar
  8. Harness T, Syms RRA (2000) Characteristic modes of electrostatic comb-drive x–y microactuators. J Micromech Microeng 10(1):7. Google Scholar
  9. Hsieh J, Fang W (2002) A boron etch-stop assisted lateral silicon etching process for improved high-aspect-ratio silicon micromachining and its applications. J Micromech Microeng 12(3):574–581CrossRefGoogle Scholar
  10. Hwang GS, Giapis KP (1997) On the origin of the notching effect during etching in uniform high density plasmas. J Vac Sci Technol B Microelectron Nanometer Struct 15(1):70–87. Google Scholar
  11. Jiang H, Yoo K, Yeh JA, Li Z, Tien NC (2002) Fabrication of thick silicon dioxide sacrificial and isolation blocks in a silicon substrate. J Micromech Microeng 12:87–95CrossRefGoogle Scholar
  12. Kiang MH, Solgaard O, Lau KY, Muller R (1998) Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning. Microelectromech Syst J 7(1):27–37. doi: 10.1109/84.661381 CrossRefGoogle Scholar
  13. Kiihamaki J, Franssila S (1999) Pattern shape effects and artifacts in deep silicon etching. J Vac Sci Technol A 17(4):2280–2285CrossRefGoogle Scholar
  14. Laermer F, Andrea S (1996) Method of anisotropically etching silicon. Patent US5501893Google Scholar
  15. Larmer F et al (1992) Method of anisotropically etching silicon. German patent DE4241045C1Google Scholar
  16. Lee S, Park S, il Cho D, Yongsoo O (1999) Surface/bulk micromachining (sbm) process and deep trench oxide isolation method for mems. In: Electron devices meeting, 1999. IEDM ’99. Technical digest. International, pp 701–704. doi: 10.1109/IEDM.1999.824248
  17. Lee S, Park S, Cho D (2002) Honeycomb-shaped deep-trench oxide posts combined with the sbm technology for micromachining single crystal silicon without using soi. Sens Actuators A 97–98:734–738. doi: 10.1016/S0924-4247(02)00013-4 CrossRefGoogle Scholar
  18. MacDonald NC (1996) {SCREAM} microelectromechanical systems. Microelectron Eng 32(1-4):49–73. doi: 10.1016/0167-9317(96)00007-X,, NanotechnologyGoogle Scholar
  19. Miao J, Sun J, Puech M (2005) Fabrication of thick SiO2 block with dry-released underneath cavity in silicon for rf mems. Electron Lett 41(11):662–664. doi: 10.1049/el:20051305 Google Scholar
  20. Morozov OV, Amirov II (2007) Aspect-ratio-independent anisotropic silicon etching in a plasma chemical cyclic process. Russ Microelectron 36(5):333–341CrossRefGoogle Scholar
  21. Oehrlein G, Kurogi Y (1998) Sidewall surface chemistry in directional etching processes. Mater Sci Eng 24:153–183CrossRefGoogle Scholar
  22. Park S, Kwak D, Ko H, Song T, il Cho D (2005) Selective silicon-on-insulator (SOI) implant: a new micromachining method without footing and residual stress. J Micromech Microeng 15(9):1607–1613. Google Scholar
  23. Rais-Zadeh M, Ayazi F (2005) Characterization of high-q spiral inductors on thick insulator-on-silicon. J Micromech Microeng 15:2105–2112CrossRefGoogle Scholar
  24. Sarajlic E, Berenschot E, Krijnen G, Elwenspoek M (2003) Versatile trench isolation technology for the fabrication of microactuators. Microelectron Eng 67-68:430–437CrossRefGoogle Scholar
  25. Schenk H, Durr P, Kunze D, Lakner H, Kuck H (2001) A resonantly excited 2d-micro-scanning mirror with large deflection. Sens Actuators A 104–111Google Scholar
  26. Sridhar U, How LC, Jun LL, Bo MY, Khen-Sang T, Dow FP, Bergstrom J, Sooriakumar K, Hong LY, San LH, Kiat TC (1998) Trench oxide isolated single crystal silicon micromachined accelerometer. In: Electron devices meeting, 1998. IEDM ’98. technical digest., International, pp 475–478. doi: 10.1109/IEDM.1998.746401
  27. Sridhar U, Jun L, Dow F, Hong L, Bo M (1999) Isolation process for surface micromachined sensors and actuators. Patent US5930595, 1999Google Scholar
  28. Tsai J, Chu HY, Hsieh, Fang JW (2004) The belst ii process for a silicon high-aspect-ratio micromaching vertical comb actuator and its applications. J Micromech Microeng. doi: 10.1088/0960-1317/14/2/010
  29. Zhu Y, Yan G, Fan J, Zhou J, Liu X, Li Z, Wang Y (2005) Fabrication of keyhole-free ultra-deep high-aspect-ratio isolation trench and its applications. J Micromech Microeng 15(3):636–642. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Physics-Technology Institute Yaroslavl BranchRussian Academy of SciencesYaroslavl’Russia

Personalised recommendations