Skip to main content
Log in

Finite element modeling and experimental proof of NEMS-based silicon pillar resonators for nanoparticle mass sensing applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The potential use of nanoelectromechanical systems (NEMS) created in silicon nanopillars (SiNPLs) is investigated in this work as a new generation of aerosol nanoparticle (NP)-detecting device. The sensor structures are created and simulated using a finite element modeling (FEM) tool of COMSOL Multiphysics 4.3b to study the resonant characteristics and the sensitivity of the SiNPL for femtogram NP mass detection in 3-D structures. The SiNPL arrays use a piezoelectric stack for resonance excitation. To achieve an optimal structure and to investigate the etching effect on the fabricated resonators, SiNPLs with different designs of meshes, sidewall profiles, heights, and diameters are simulated and analyzed. To validate the FEM results, fabricated SiNPLs with a high aspect ratio of approximately 60 are used and characterized in resonant frequency measurements where their results agree well with those simulated by FEM. Furthermore, the deflection of a SiNPL can be enhanced by increasing the applied piezoactuator voltage. By depositing different NPs [i.e., gold (Au), silver (Ag), titanium dioxide (TiO2), silicon dioxide (SiO2), and carbon black NPs] on the SiNPLs, the decrease of the resonant frequency is clearly shown confirming their potential to be used as airborne NP mass sensor with femtogram resolution level. A coupling concept of the SiNPL arrays with piezoresistive cantilever resonator in terms of the mass loading effect is also studied concerning the possibility of obtaining electrical readout signal from the resonant sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Banerjee A, Mankad T, Dhamodaran S, Ramkumar J, Kulkarni VN (2009) The measurement of attogram mass accumulation on nanostructures during e-beam scanning, using carbon nanopillars in resonant mode. Nanotechnology 20:345501. doi:10.1088/0957-4484/20/34/345501 (7 pp)

    Article  Google Scholar 

  • Beardslee LA, Josse F, Heinrich SM, Dufour I, Brand O (2012) Geometrical considerations for the design of liquid-phase biochemical sensors using a cantilever’s fundamental in-plane mode. Sens Actuators B 164:7–14. doi:10.1016/j.snb.2012.01.035

    Article  Google Scholar 

  • Butt HJ, Jaschke M (1995) Calculation of thermal noise in atomic-force microscopy. Nanotechnology 6:1–7

    Article  Google Scholar 

  • COMSOL (2013) COMSOL Multiphysics Release Notes: Version 4.3b. COMSOL AB, Stockholm, Sweden

  • Dean J, Gibbs MRJ, Schrefl T (2006) Finite-element analysis on cantilever beams coated with magnetostrictive material. IEEE Trans Magn 42(2):283–288. doi:10.1109/TMAG.2005.861322

    Article  Google Scholar 

  • Dikin DA, Chen X, Ding W, Wagner G, Ruoff RS (2003) Resonance vibration of amorphous SiO2 nanowires driven by mechanical or electrical field excitation. J Appl Phys 93:226–230

    Article  Google Scholar 

  • Eom K, Park HS, Yoon DS, Kwon T (2011) Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles. Phys Rep 503:115–163. doi:10.1016/j.physrep.2011.03.002

    Article  Google Scholar 

  • Gil M, Manzaneque T, Hernando-Garcia J, Ababneh A, Seidel H, Sanchez-Rojas JL (2012) Selective modal excitation in coupled piezoelectric microcantilevers. Microsyst Technol 18:917–924. doi:10.1007/s00542-011-1411-y

    Article  Google Scholar 

  • Hajjam A, Wilson JC, Pourkamali S (2011) Individual air-borne particle mass measurement using high-frequency micromechanical resonators. IEEE Sens J 11(11):2883–2890. doi:10.1109/JSEN.2011.214730301

    Article  Google Scholar 

  • Hassellöv M, Readman JW, Ranville JF, Tiede K (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17:344–361. doi:10.1007/s10646-008-0225-x

    Article  Google Scholar 

  • Hopcroft MA, Nix WD, Kenny TW (2010) What is the Young’s modulus of silicon? J Microelectromech Syst 19:229–238. doi:10.1109/JMEMS.2009.2039697

    Article  Google Scholar 

  • Kaajakari V, Mattila T, Lipsanen A, Oja A (2005) Nonlinear mechanical effects in silicon longitudinal mode beam resonators. Sens Actuators A 120(1):64–70. doi:10.1016/j.sna.2004.11.010

    Article  Google Scholar 

  • Kacem N, Arcamone J, Perez-Murano F, Hentz S (2010) Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS gas/mass sensor applications. J Micromech Microeng 20:045023. doi:10.1088/0960-1317/20/4/045023 (9 pp)

    Article  Google Scholar 

  • Ling MP, Chio CP, Chou WC, Chen WY, Hsieh NH, Lin YJ, Liao CM (2011) Assessing the potential exposure risk and control for airborne titanium dioxide and carbon black nanoparticles in the workplace. Environ Sci Pollut Res (International) 18(6):877–889. doi:10.1007/s11356-011-0447-y

    Article  Google Scholar 

  • Lu J, Ikehara T, Zhang Y, Mihara T, Maeda R (2008) Mechanical quality factor of microcantilevers for mass sensing applications. Proc SPIE 6800:68001Y. doi:10.1117/12.759393

    Article  Google Scholar 

  • Lu Y, Peng S, Luo D, Lal A (2012) Femtomolar sensitivity DNA photonic crystal nanowire array ultrasonic mass sensor. In: Proceedings of IEEE MEMS 2012, Paris, France, pp. 88–91. doi: 10.1109/MEMSYS.2012.6170100

  • Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18(4):319–326. doi:10.1002/elan.200503415

    Article  Google Scholar 

  • Messina M, Njuguna J, Dariol V, Pace C, Angelett G (2013) Design and simulation of a novel biomechanic piezoresistive sensor with silicon nanowires. IEEE/ASME Trans Mechatron 18(3):1201–1210. doi:10.1109/TMECH.2012.2200258

    Article  Google Scholar 

  • Pomorska A, Shchukin D, Hammond R, Cooper MA, Grundmeier G, Johannsmann D (2010) Positive frequency shifts observed upon adsorbing micron-sized solid objects to a quartz crystal microbalance from the liquid phase. Anal Chem 82:2237–2242. doi:10.1021/ac902012e

    Article  Google Scholar 

  • Ramakrishnan N, Nemade HB, Palathinkal RP (2012) Resonant frequency characteristics of a SAW device attached to resonating micropillars. Sensors 12:3789–3797. doi:10.3390/s120403789

    Article  Google Scholar 

  • Sandberg R, Molhave K, Boisen A, Svendsen W (2005) Effect of gold coating on the Q-factor of a resonant cantilever. J Micromech Microeng 15:2249–2253. doi:10.1088/0960-1317/15/12/006

    Article  Google Scholar 

  • Schmid S, Kurek M, Adolphsen JQ, Boisen A (2013) Real-time single airborne nanoparticle detection with nanomechanical resonant filter-fiber. Sci Rep 3:1288. doi:10.1038/srep01288 (5 pp)

    Article  Google Scholar 

  • Seo JH, Brand O (2008) High Q-factor in-plane-mode resonant microsensor platform for gaseous/liquid environment. J Microelectromech Syst 17(2):483–493. doi:10.1109/JMEMS.2008.916328

    Article  Google Scholar 

  • Sökmen Ü, Stranz A, Fündling S, Merzsch S, Neumann R, Wehmann H–H, Peiner E, Waag A (2010) Shallow and deep dry etching of silicon using ICP cryogenic reactive ion etching process. Microsyst Technol 16:863–870. doi:10.1007/s00542-010-1035-7

    Article  Google Scholar 

  • Stranz A, Waag A, Peiner E (2011a) Thermal characterization of vertical silicon nanowires. J Mater Res 26(15):1958–1962. doi:10.1557/jmr.2011.60

    Article  Google Scholar 

  • Stranz A, Sökmen Ü, Kähler J, Waag A, Peiner E (2011b) Measurements of thermoelectric properties of silicon pillars. Sens Actuators A: Phys 171:48–53. doi:10.1016/j.sna.2011.01.022

    Google Scholar 

  • Tao Y, Li X, Xu T, Yu H, Xu P, Xiong B, Wei C (2011) Resonant cantilever sensors operated in a high-Q in-plane mode for real-time bio/chemical detection in liquids. Sens Actuators B: Chem 157:606–614. doi:10.1016/j.snb.2011.05.030

    Article  Google Scholar 

  • Wasisto HS, Merzsch S, Waag A, Uhde E, Salthammer T, Peiner E (2013a) Airborne engineered nanoparticle mass sensor based on a silicon resonant cantilever. Sens Actuators B: Chem 180:77–89. doi:10.1016/j.snb.2012.04.003

    Article  Google Scholar 

  • Wasisto HS, Merzsch S, Stranz A, Waag A, Uhde E, Salthammer T, Peiner E (2013b) Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection. Sens Actuators B: Chem 189:146–156. doi:10.1016/j.snb.2013.02.053

    Article  Google Scholar 

  • Wasisto HS, Merzsch S, Waag A, Uhde E, Salthammer T, Peiner E (2013c) Portable cantilever-based airborne nanoparticle detector. Sens Actuators B: Chem 187:118–127. doi:10.1016/j.snb.2012.09.074

    Article  Google Scholar 

  • Wasisto HS, Merzsch S, Waag A, Uhde E, Salthammer T, Peiner E (2013d) Evaluation of photoresist-based nanoparticle removal method for recycling silicon cantilever mass sensors. Sens Actuators A: Phys 202:90–99. doi:10.1016/j.sna.2012.12.016

    Article  Google Scholar 

  • Wasisto HS, Merzsch S, Stranz A, Waag A, Uhde E, Salthammer T, Peiner E (2013e) Silicon nanowire resonators: aerosol nanoparticle mass sensing in the workplace. IEEE Nanatechnol Mag 7:18–23. doi:10.1109/MNANO.2013.2260462

    Article  Google Scholar 

  • Wasisto HS, Merzsch S, Stranz A, Waag A, Uhde E, Salthammer T, Peiner E (2013f) Femtogram aerosol nanoparticle mass sensing utilising vertical silicon nanowire resonators. IET Micro & Nano Letters 8(10):554–558. doi:10.1049/mnl.2013.0208

    Article  Google Scholar 

  • Zhou J, Lao CS, Gao P, Mai W, Hughes WL, Deng SZ, Xu NS, Wang ZL (2006) Nanowire as pico-gram balance at workplace atmosphere. Solid State Commun 139:222–226. doi:10.1016/j.ssc.2006.06.004

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Juliane Arens, Doris Rümmler, and Karl-Heinz Lachmund for their valuable technical assistances. This work is performed in the collaborative project “NanoExpo” funded by the German Federal Ministry of Education and Research (BMBF) within the cluster “NanoCare” under no. 03X0098A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hutomo Suryo Wasisto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasisto, H.S., Huang, K., Merzsch, S. et al. Finite element modeling and experimental proof of NEMS-based silicon pillar resonators for nanoparticle mass sensing applications. Microsyst Technol 20, 571–584 (2014). https://doi.org/10.1007/s00542-013-1992-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1992-8

Keywords

Navigation