Skip to main content
Log in

A phase-locked loop frequency tracking system for portable microelectromechanical piezoresistive cantilever mass sensors

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A closed-loop circuit is developed in this work for tracking the resonant frequency of silicon microcantilever mass sensors. The proposed closed-loop system is mainly based on a phase-locked loop (PLL) circuit. To lock onto the resonant frequency of the resonator, an actuation signal generated from a voltage-controlled oscillator is fed back to the input reference signal of the cantilever sensor. In addition to the PLL circuit, an instrumentation amplifier and an active low-pass filter are connected to the system for gaining the cantilever output signal and transforming a rectangular PLL output signal into a sinusoidal signal used for sensor actuation, respectively. To demonstrate the functionality of the system, a self-sensing silicon cantilever resonator with a built-in piezoresistive Wheatstone bridge is fabricated and integrated with the circuit. A piezoactuator is employed to actuate the cantilever into resonance. From the measurement results, the integrated closed-loop system is successfully employed to characterize a 9.4 kHz cantilever sensor under ambient temperature cross-sensitivity yielding a sensor temperature coefficient of −32.8 ppm/°C. In addition to it, the sensor was also exposed to exhaled human breath condensates and e-cigarette aerosols to test the sensor sensitivity obtained from mass-loading effects. With a high frequency stability (i.e., a frequency deviation as low as 0.02 Hz), this developed system is intended to support the miniaturization of the instrumentation modules for cantilever-based nanoparticle detectors (CANTORs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abramovitch D (2002) Phase-locked loops: a control centric tutorial. Proceedings of the American Control Conference 1:1–15. doi:10.1109/ACC.2002.1024769

  • Cahn Z, Siegel M (2011) Electronic cigarettes as a harm reduction strategy for tobacco control: a step forward or a repeat of past mistakes? J Public Health Policy 32:16–31. doi:10.1057/jphp.2010.41

    Article  Google Scholar 

  • Calleja M, Nordström M, Álvareza M, Tamayo J, Lechuga LM, Boisen A (2005) Highly sensitive polymer-based cantilever-sensors for DNA detection. Ultramicroscopy 105:215–222. doi:10.1016/j.ultramic.2005.06.039

    Article  Google Scholar 

  • Etter J-F, Bullen C (2011) Electronic cigarette: users profile, utilization, satisfaction and perceived efficacy. Addiction 106:2017–2028. doi:10.1111/j.1360-0443.2011.03505.x

    Article  Google Scholar 

  • Hsieh G-C, Hung JC (1996) Phase-locked loop techniques-a survey. IEEE Trans Industr Electron 43:609–615. doi:10.1109/41.544547

    Article  Google Scholar 

  • Koev ST, Fernandes R, Bentley WE, Ghodssi R (2009) A cantilever sensor with an integrated optical readout for detection of enzymatically produced homocysteine. IEEE Trans Biomed Circuits Syst 3:6. doi:10.1109/TBCAS.2009.2026634

    Article  Google Scholar 

  • Li H-C, Tseng S-H, Huang P-C, Lu MS-C (2012) Study of CMOS micro machined self-oscillating loop utilizing a phase-locked loop-driving circuit. J. Micromech Microeng 22:055024. doi:10.1088/0960-1317/22/5/055024

    Google Scholar 

  • Maksimovic D (1997) CMOS 4046 phase-locked loop. University of Colorado, Boulder, pp 1–10

    Google Scholar 

  • Patel A, Kothari M, Webster JG, Tompkins WJ, Wertsch JJ (1989) A capacitance pressure sensor using a phase-locked loop. J Rehabil Res Dev 26:55–62

    Google Scholar 

  • Samarao AK, Ayazi F (2009) Temperature compensation of silicon micromechanical resonators via degenerate doping. In: Proceedings IEEE International Electron Devices Meeting (IEDM), pp 33.2.1–33.2.4. doi:10.1109/IEDM.2009.5424221

  • Sandberg R, Svendsen W, Molhave K, Boisen A (2005) Temperature and pressure dependence of resonant in multi-layer micro cantilevers. J Micromech Microeng 15:1454–1458. doi:10.1088/0960-1317/15/8/011

    Article  Google Scholar 

  • Schripp T, Markewitz D, Uhde E, Salthammer T (2012) Does e-cigarette consumption cause passive vaping? Indoor Air 23:1–7. doi:10.1111/j.1600-0668.2012.00792.x

    Google Scholar 

  • Smithgall DH (1975) A phase-locked loop motor control system. IEEE Transactions on Industrial Electronics and Control Instrumentation IECI-22:487–490. doi:10.1109/TIECI.1975.351315

    Google Scholar 

  • Stark RW (2004) Optical lever detection in higher eigenmode dynamic atomic force microscopy. Rev Sci Instrum 75:5053–5055. doi:10.1063/1.1808058

    Article  Google Scholar 

  • Svensson S, Olin AC, Hellgren J (2006) Increased net water loss by oral compared to nasal expiration in healthy subjects. Rhinology 44:74–77

    Google Scholar 

  • Ting HW, Wang HY (2010) Improvement of stop-band attenuation for the sallen-key low-pass filter. In: Proceedings of international symposium on next-generation electronics (ISNE), 158–161. doi:10.1109/ISNE.2010.5669175

  • Tsu ME, Babb AL, Ralph DD, Hlastala MP (1988) Dynamics of heat, water, and soluble gas exchange in the human airways: 1. A model study. Ann Biomed Eng 16:547–571. doi:10.1007/BF02368015

    Article  Google Scholar 

  • Villarroya M, Verd J, Teva J, Abadal G, Forsen E, Murano FP, Uranga A, Figueras E, Montserrat J, Esteve J, Boisen A, Barniol N (2006) System on chip mass sensor based on polysilicon cantilevers arrays for multiple detection. Sens Actuators A 132:154–164. doi:10.1016/j.sna.2006.04.002

    Article  Google Scholar 

  • Wasisto HS, Merzsch S, Stranz A, Waag A, Kirsch I, Uhde E, Salthammer T, Peiner E (2011) A resonant cantilever sensor for monitoring airborne nanoparticles. Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS 2011), Beijing, Republic of China, 1116–1119. doi:10.1109/TRANSDUCERS.2011.5969233

  • Wasisto HS, Merzsch S, Waag A, Uhde E, Salthammer T, Peiner E (2013a) Airborne engineered nanoparticle mass sensor based on a silicon resonant cantilever. Sens Actuators B Chemical 180:77–89. doi:10.1016/j.snb.2012.04.003

    Article  Google Scholar 

  • Wasisto HS, Merzsch S, Stranz A, Waag A, Uhde E, Salthammer T, Peiner E (2013b) Silicon resonant nanopillar sensors for airborne titanium dioxide engineered nanoparticle mass detection. Sens Actuators B Chemical 189:146–156. doi:10.1016/j.snb.2013.02.053

    Article  Google Scholar 

  • Wasisto HS, Merzsch S, Stranz A, Waag A, Uhde E, Salthammer T, Peiner E (2013c) Silicon nanowire resonators: aerosol nanoparticle mass sensing in the workplace. IEEE Nanatechnol Mag 7:18–23. doi:10.1109/MNANO.2013.2260462

    Article  Google Scholar 

  • Wasisto HS, Merzsch S, Waag A, Uhde E, Salthammer T, Peiner E (2013d) Portable cantilever-based airborne nanoparticle detector. Sens Actuators B Chemical 187:118–127. doi:10.1016/j.snb.2012.09.074

    Article  Google Scholar 

  • Wasisto HS, Merzsch S, Waag A, Uhde E, Salthammer T, Peiner E (2013e) Evaluation of photoresist-based nanoparticle removal method for recycling silicon cantilever mass sensors. Sens Actuators A 202:90–99. doi:10.1016/j.sna.2012.12.016

    Article  Google Scholar 

  • Wu C-H, Hsieh H-H, Ku P-C, Lu L-H (2010) A differential Sallen-key low-pass filter in amorphous-silicon technology. J Disp Technol 6:207–214. doi:10.1109/JDT.2010.2044631

    Article  Google Scholar 

  • Xiu L, Li Z (2012) Low-power instrumentation amplifier IC design for ECG system applications. Procedia Eng 29:1533–1538. doi:10.1016/j.proeng.2012.01.168

    Article  Google Scholar 

  • Yu H, Li X, Gan X, Liu Y, Liu X, Xu P, Li J, Liu M (2009) Resonant-cantilever bio/chemical sensors with an integrated heater for both resonance exciting optimization and sensing repeatability enhancement. J Micromech Microeng 19:045023. doi:10.1088/0960-1317/19/4/045023

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Juliane Arens, Doris Rümmler, and Karl-Heinz Lachmund for their valuable technical assistances. This work is performed in the collaborative project “NanoExpo” funded by the German Federal Ministry of Education and Research (BMBF) within the cluster “NanoCare” under No. 03X0098A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hutomo Suryo Wasisto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasisto, H.S., Zhang, Q., Merzsch, S. et al. A phase-locked loop frequency tracking system for portable microelectromechanical piezoresistive cantilever mass sensors. Microsyst Technol 20, 559–569 (2014). https://doi.org/10.1007/s00542-013-1991-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1991-9

Keywords

Navigation