Skip to main content
Log in

Micro porous polymer foil for application in evaporation cooling

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A novel bionic cooling system for photo voltaic (PV)-cells based on a micro porous evaporation polymer foils is developed and the cooling mechanism is demonstrated. The foil consists of a two layer permanent resist on a silicon substrate with an evaporation pore diameter of 35 μm. Evaporation rates of the porous cooling area exceed those of bulk water by about three orders of magnitude. A homogeneous cooling effect on the PV front side of 4.2 K at an environment temperature of 55 °C and 45 % RH is proved. The developed fabrication is transferable to large scale mass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akbarzadeh A, Wadowski T (1996) Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation. Appl Therm Eng 16:81–87

    Article  Google Scholar 

  • Anderson WG, Tamanna S, Sarraf DB, Dussinger PM, Hoffman Jr. RW (2008) Heat pipe cooling of concentrating photovoltaic (CPV) systems. PVSC’08. 33rd IEEE 1–6

  • Bošnkjaković F (1998) Technical Thermodynamics, Dr. Dietrich Steinkopff Verlag, GmbH & Co. KG Darmstadt

  • Bruus H (2006) Theoretical Micro fluidics, OUP Oxford

  • Daverat C, Pabiou H, Ménézo C, Bouia H, Xin S (2013) Experimental investigation of turbulent natural convection in a vertical water channel with symmetric heating: flow and heat transfer. Exp Thermal Fluid Sci 44:182–193

    Article  Google Scholar 

  • Du B, Hu E, Kohle M (2012) Performance analysis of water cooled concentrated photovoltaic (CPV) system. Renew Sustain Energy Rev 16:6732

    Article  Google Scholar 

  • DuPont (2013) PerMX 3000 Datasheet, Micro Resist Technology GmbH, Germany. http://www.microresist.de/products/dupont/PerMX3000_09071601_ls.pdf. Accessed 14 October 2013

  • Hisatake K, Tanaka S, Aizawa Y (1993) Evaporation rate of water in a vessel. J Appl Phys 73:7395–7401

    Article  Google Scholar 

  • Kropf (2003) PV/T-Schiefer Labormessungen. http://www.empa-ren.ch/ren/Projekte_Gebaeudekonzepte/Pdf%20Gebaeudekonzepte/Labormessungen%20Hybridkollektoren.pdf, 16.05.2013

  • Meng Q, Hu W (2005) Roof cooling effect with humid porous medium. Energy Build 37:1–9

    Article  Google Scholar 

  • Moosberg–Kropf S (2006) PV/T-Schiefer. Optimierung der Hinterlüftung und der Abwärmenutzung gebäudeintegrierter Photovoltaik. ETH Zürich, Dissertation

  • Teo HG, Lee PS, Hawlader MNA (2012) An active cooling system for photovoltaic modules. Appl Energy 90:309–315

    Article  Google Scholar 

  • Tötzke C (2009) Studies on the tensile state of water in trees, Freie Universität Berlin, Dissertation

  • Van Foreest A, Sippel M, Gülhan A, Esser B, Ambrosius BAC, Sudmeijer K (2009) Transpiration cooling using liquid water. J Thermophys Heat Transf 23:693–702

    Article  Google Scholar 

  • Vulto P, Huesgen T, Albrecht B, Urban GA (2009) A full-wafer fabrication process for glass microfluidic chips with integrated electroplated electrodes by direct bonding of dry film resist. J Micromech Microeng 19:77001

    Article  Google Scholar 

  • Wangler N, Gutzweiler L, Kalkandjiev K, Müller C, Mayenfels F, Reinecke H, Zengerle R, Paust N (2011) High-resolution permanent photoresist laminate TMMF for sealed microfluidic structures in biological applications. J Micromech Microeng 21:95009

    Article  Google Scholar 

  • Wheeler TD, Stroock AD (2008) The transpiration of water at negative pressures in a synthetic tree. Nature 455:208–212

    Article  Google Scholar 

  • Wilke K, Martin A, Terstegen L, Biel SS (2007) A short history of sweat gland biology. Int J Cosmet Sci 29:169–179

    Article  Google Scholar 

  • Zentgraf E (2009a) http://www.tec-institut.de/pdf_download/Unterschiedliche_%20Hinterlueftung.pdf. Accessed 16 October 2013

  • Zentgraf E (2009b) http://www.tec-institut.de/pdf_download/Experimente_mit_verschiedenen_Kuehlungsvarianten.pdf. Accessed 16 October 2013

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Ziel2.nrw, Ministerium für Wirtschaft, Energie, Industrie, Mittelstand und Handwerk des Landes Nordrhein-Westfalen and Europäische Union-Investition in unsere Zukunft-Europäischer Fonds für regionale Entwicklung. They also would like to thank Temicon GmbH Dortmund, Ulrich Marggraf of the Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., and Florian Haußmann-Leick for their help, advice and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyn Drabiniok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drabiniok, E., Neyer, A. Micro porous polymer foil for application in evaporation cooling. Microsyst Technol 20, 1913–1918 (2014). https://doi.org/10.1007/s00542-013-1983-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1983-9

Keywords

Navigation