“From microtiter plates to droplets” tools for micro-fluidic droplet processing

Abstract

Droplet-based microfluidic allows high throughput experimentation in with low volume droplets. Essential fluidic process steps are on the one hand the proper control of the droplet composition and on the other hand the droplet processing, manipulation and storage. Beside integrated fluidic chips, standard PTFE-tubings and fluid connectors can be used in combination with appropriate pumps to realize almost all necessary fluidic processes. The segmented flow technique usually operates with droplets of about 100–500 nL volume. These droplets are embedded in an immiscible fluid and confined by channel walls. For the integration of segmented flow applications in established research workflows—which are usually base on microtiter plates—robotic interface tools for parallel/serial and serial/parallel transfer operations are necessary. Especially dose–response experiments are well suited for the segmented flow technique. We developed different transfer tools including an automated “gradient take-up tool” for the generation of segment sequences with gradually changing composition of the individual droplets. The general working principles are introduced and the fluidic characterizations are given. As exemplary application for a dose–response experiment the inhibitory effect of antibiotic tetracycline on Escherichia coli bacteria cultivated inside nanoliter droplets was investigated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Agresti JJ, Antipov E, Abate AR, Ahn K, Rowat AC, Baret J-C, Marquez M, Klibanov AM, Griffiths AD, Weitz DA (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci USA 107(9):4004–4009. doi:10.1073/pnas.0910781107

    Article  Google Scholar 

  2. Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci USA 106(34):14195–14200. doi:10.1073/pnas.0903542106

    Article  Google Scholar 

  3. Cao J, Kürsten D, Schneider S, Knauer A, Günther PM, Köhler JM (2012a) Uncovering toxicological complexity by multi-dimensional screenings in microsegmented flow: modulation of antibiotic interference by nanoparticles. Lab Chip 12(3):474–484. doi:10.1039/c1lc20584f

    Article  Google Scholar 

  4. Cao JL, Kürsten D, Schneider S, Köhler JM (2012b) Stimulation and inhibition of bacterial growth by caffeine dependent on chloramphenicol and a phenolic uncoupler-A ternary toxicity study using microfluid segment technique. J Biomed Nanotechnol 8(5):770–778. doi:10.1166/jbn.2012.1447

    Article  Google Scholar 

  5. Chalmers G, Kozak GK, Hillyer E, Reid-Smith RJ, Boerlin P (2010) Low minimum inhibitory concentrations associated with the tetracycline-resistance gene tet(C) in Escherichia coli. Can J Vet Res-Rev Can Rech Vet 74(2):145–148

    Google Scholar 

  6. Clausell-Tormos J, Merten CA (2012) Micro segmented-flow in biochemical and cell-based assays. Front Biosci (Elite Ed) 4:1768–1779

    Article  Google Scholar 

  7. Clausell-Tormos J, Griffiths AD, Merten CA (2010) An automated two-phase microfluidic system for kinetic analyses and the screening of compound libraries. Lab Chip 10(10):1302–1307. doi:10.1039/b921754a

    Article  Google Scholar 

  8. Du W-B, Sun M, Gu S-Q, Zhu Y, Fang Q (2010) Automated microfluidic screening assay platform based on drop lab. Anal Chem 82(23):9941–9947. doi:10.1021/ac1020479

    Article  Google Scholar 

  9. Funfak A, Hartung R, Cao J, Martin K, Wiesmueller K-H, Wolfbeis OS, Köhler JM (2009) Highly resolved dose-response functions for drug-modulated bacteria cultivation obtained by fluorometric and photometric flow-through sensing in microsegmented flow. Sens Actuators B Chem 142(1):66–72. doi:10.1016/j.snb.2009.07.017

    Article  Google Scholar 

  10. Hartung R, Brösing A, Sczcepankiewicz G, Liebert U, Haefner N, Duerst M, Felbel J, Lassner D, Köhler JM (2009) Application of an asymmetric helical tube reactor for fast identification of gene transcripts of pathogenic viruses by micro flow-through PCR. Biomed Microdevices 11(3):685–692. doi:10.1007/s10544-008-9280-6

    Article  Google Scholar 

  11. Hatakeyama T, Chen DL, Ismagilov RF (2006) Microgram-scale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by MALDI-MS. J Am Chem Soc 128(8):2518–2519. doi:10.1021/ja057720w

    Article  Google Scholar 

  12. Hosokawa K, Fujii T, Endo I (1999) Handling of picoliter liquid samples in a poly(dimethylsiloxane)-based microfluidic device. Anal Chem 71(20):4781–4785. doi:10.1021/ac990571d

    Article  Google Scholar 

  13. Köhler JM, Henkel T, Grodrian A, Kirner T, Roth M, Martin K, Metze J (2004) Digital reaction technology by micro segmented flow—components, concepts and applications. Chem Eng J 101(1–3):201–216. doi:10.1016/j.cej.2003.11.025

    Article  Google Scholar 

  14. Ma HC, Horiuchi KY, Wang Y, Kucharewicz SA, Diamond SL (2005) Nanoliter homogenous ultra-high throughput screening microarray for lead discoveries and IC50 profiling. Assay Drug Dev Technol 3(2):177–187. doi:10.1089/adt.2005.3.177

    Article  Google Scholar 

  15. Migliore L, Rotini A, Thaller MC (2013) Low doses of tetracycline trigger the E. Coli growth: a case of hormetic response. Dose Response. doi:10.2203/dose-response.13-002.Migliore

    Google Scholar 

  16. Miller OJ, El Harrak A, Mangeat T, Baret J-C, Frenz L, El Debs B, Mayot E, Samuels ML, Rooney EK, Dieu P, Galvan M, Link DR, Griffiths AD (2012) High-resolution dose-response screening using droplet-based microfluidics. Proc Natl Acad Sci USA 109(2):378–383. doi:10.1073/pnas.1113324109

    Article  Google Scholar 

  17. Schemberg J, Grodrian A, Römer R, Gastrock G, Lemke K (2009) Online optical detection of food contaminants in microdroplets. Eng Life Sci 9(5):391–397. doi:10.1002/elsc.200800127

    Article  Google Scholar 

  18. Schumacher JT, Grodrian A, Lemke K, Römer R, Metze J (2008) System development for generating homogeneous cell suspensions and transporting them in microfluidic devices. Eng Life Sci 8(1):49–55. doi:10.1002/elsc.200720224

    Article  Google Scholar 

  19. Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microflulidic channels. Angew Chem Int Ed 45(44):7336–7356. doi:10.1002/anie.200601554

    Article  Google Scholar 

  20. Stanley CE, Wootton RCR, deMello AJ (2012) Continuous and segmented flow microfluidics: applications in high-throughput chemistry and biology. Chimia 66(3):88–98. doi:10.2533/chimia.2012.88

    Article  Google Scholar 

  21. Wood KB, Cluzel P (2012) Trade-offs between drug toxicity and benefit in the multi-antibiotic resistance system underlie optimal growth of E. coli. BMC Syst Biol 6:48. doi:10.1186/1752-0509-6-48

    Article  Google Scholar 

  22. Wu J, Zhang M, Li X, Wen W (2012) Multiple and high-throughput droplet reactions via combination of microsampling technique and microfluidic chip. Anal Chem 84(22):9689–9693. doi:10.1021/ac302249h

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the BMWI-Project “PharmTest” FKZ:KS2731202AK0, BMBF-Project “BactoKat” FKZ:031A161A, and the German Federal Environmental Foundation (DBU 20009/009) is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Alexander Groß.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cao, J., Schneider, S., Schultheiß, R. et al. “From microtiter plates to droplets” tools for micro-fluidic droplet processing. Microsyst Technol 21, 539–548 (2015). https://doi.org/10.1007/s00542-013-1981-y

Download citation

Keywords

  • Syringe Pump
  • Flow Rate Ratio
  • Segment Volume
  • Segmented Flow
  • Carrier Medium