Skip to main content
Log in

MCU based real-time temperature control system for universal microfluidic PCR chip

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The analysis of genetic materials in the post-human genome project era has become an ever-expanding branch of research and thus routinely employed in majority of biochemical laboratories. Most of the diagnostic research area emphasizes on polymerase chain reaction for detecting pathogenic organisms. However, the conventional polymerase chain reaction requires expensive and sophisticated thermal cycler and is not handy owing to its large dimensions. Therefore, we fabricated a continuous-flow polymerase chain reaction chip on a PDMS based microfluidic platform to ease the hardship of the conventional system. Temperature being the most crucial factor in polymerase chain reaction, was monitored and regulated by thermostatic action using an on-line computer system. Indium tin oxide coated glass platform was used for heating as it is transparent and has good thermal conductivity under the influence of DC bias. The heating circuit used an ATMega 128 MCU to control the temperature. As a result, a precise and quick heating environment was maintained on the microfluidic chip to amplify the target DNA. We successfully amplified Lambda phage and Escherichia coli DNA on our chip to prove the practicality of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cho Y-K, Kim J, Lee Y, Kim Y-A, Namkoong K, Lim H, Oh KW, Kim S, Han J, Park C, Pak YE, Ki C-S, Choi JR, Myeong H-K, Ko C (2006) Clinical evaluation of micro-scale chip-based PCR system for rapid detection of hepatitis B virus. Biosens Bioelectron 21(11):2161–2169. doi:10.1016/j.bios.2005.10.005

    Article  Google Scholar 

  • Christensen TB, Bang DD, Wolff A (2008) Multiplex polymerase chain reaction (PCR) on a SU-8 chip. Microelectron Eng 85(5–6):1278–1281. doi:10.1016/j.mee.2008.01.066

    Article  Google Scholar 

  • Fang TH, Ramalingam N, Xian-Dui D, Ngin TS, Xianting Z, Lai Kuan AT, Peng Huat EY, Hai-Qing G (2009) Real-time PCR microfluidic devices with concurrent electrochemical detection. Biosens Bioelectron 24(7):2131–2136. doi:10.1016/j.bios.2008.11.009

    Article  Google Scholar 

  • Huang T-T, Wang J-S, Yu C-S, Hu Y-C (2011) A novel rapid-reaction nucleic-acid amplification device using micro-volume chips. Instrumentation and measurement technology conference (I2MTC), 2011 IEEE doi:10.1109/imtc.2011.5944229

  • Jha SK, Chand R, Han D, Jang Y-C, Ra G-S, Kim JS, Nahm B-H, Kim Y-S (2012) An integrated PCR microfluidic chip incorporating aseptic electrochemical cell lysis and capillary electrophoresis amperometric DNA detection for rapid and quantitative genetic analysis. Lab Chip. doi:10.1039/c2lc40727b

    Google Scholar 

  • Joung S-R, Kang CJ, Kim Y-S (2008) Series DNA amplification using the continuous-flow polymerase chain reaction chip. Jpn J Appl Phys 47(2):1342–1345. doi:10.1143/jjap.47.1342

    Article  Google Scholar 

  • Kim J-H, Na K-H, Kang CJ, Kim Y-S (2005) A disposable thermopneumatic-actuated micropump stacked with PDMS layers and ITO-coated glass. Sens Actuators A 120(2):365–369. doi:10.1016/j.sna.2004.12.024

    Article  Google Scholar 

  • Kim JA, Lee JY, Seong S, Cha SH, Lee SH, Kim JJ, Park TH (2006) Fabrication and characterization of a PDMS: glass hybrid continuous-flow PCR chip. Biochem Eng J 29(1–2):91–97. doi:10.1016/j.bej.2005.02.032

    Article  Google Scholar 

  • Lee SH, Kim S-W, Kang JY, Ahn CH (2008) A polymer lab-on-a-chip for reverse transcription (RT)-PCR based point-of-care clinical diagnostics. Lab Chip 8(12):2121. doi:10.1039/b811131f

    Article  Google Scholar 

  • McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21(1):27–40. doi:10.1002/(SICI)1522-2683(20000101)21:1<27:AID-ELPS27>3.0.CO;2-C

    Article  Google Scholar 

  • Park S, Zhang Y, Lin S, Wang T-H, Yang S (2011) Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnol Adv 29(6):830–839. doi:10.1016/j.biotechadv.2011.06.017

    Article  Google Scholar 

  • Peham JR, Grienauer W, Steiner H, Heer R, Vellekoop MJ, Nohammer C, Wiesinger-Mayr H (2011) Long target droplet polymerase chain reaction with a microfluidic device for high-throughput detection of pathogenic bacteria at clinical sensitivity. Biomed Microdevices 13(3):463–473. doi:10.1007/s10544-011-9514-x

    Article  Google Scholar 

  • Schneegaß I, Köhler JM (2001) Flow-through polymerase chain reactions in chip thermocyclers. Rev Mol Biotechnol 82(2):101–121. doi:10.1016/s1389-0352(01)00033-2

    Article  Google Scholar 

  • Schneegaß I, Bräutigam R, Köhler JM (2001) Miniaturized flow-through PCR with different template types in a silicon chip thermocycler. Lab Chip 1(1):42. doi:10.1039/b103846j

    Article  Google Scholar 

  • Shin KS, Kim YH, Min JA, Kwak SM, Kim SK, Yang EG, Park JH, Ju BK, Kim TS, Kang JY (2006) Miniaturized fluorescence detection chip for capillary electrophoresis immunoassay of agricultural herbicide atrazine. Anal Chim Acta 573–574:164–171. doi:10.1016/j.aca.2006.05.099

    Article  Google Scholar 

  • Wang L, Song HX, Chen T, Wang ZH (2011) A design of dspic based microfluidic pcr chip temperature controlling system. Appl Mech Mater 108:206–211. doi:10.4028/www.scientific.net/AMM.108.206

    Article  Google Scholar 

  • Xue N, Yan W (2012) Glass-based continuous-flow pcr chip with a portable control system for DNA amplification. IEEE Sens J 12(6):1914–1918. doi:10.1109/jsen.2011.2182047

    Article  Google Scholar 

  • Zhu J, Palla M, Ronca S, Wapner R, Ju J, Lin Q (2013) A MEMS-based approach to single nucleotide polymorphism genotyping. Sens Actuators A 195:175–182. doi:10.1016/j.sna.2012.07.025

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported by Samsung Research Fund, Sungkyunkwan University, 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Sang Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1861 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, D., Jang, YC., Oh, SN. et al. MCU based real-time temperature control system for universal microfluidic PCR chip. Microsyst Technol 20, 471–476 (2014). https://doi.org/10.1007/s00542-013-1970-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1970-1

Keywords

Navigation