Skip to main content
Log in

Investigation of surface roughness effects on fluid flow in passive micromixer

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Surface roughness effects are dominant at microscale. In this study, microchannels are fabricated on Silicon substrate. The roughness morphology is modeled for the fabricated structure using Weierstrass-Mandelbrot function for self-similar fractals. A two dimensional model of hexagonal passive micromixer is analyzed with surface roughness present on inner walls of channels using parallel Lattice Boltzmann method, implemented on sixteen node cluster. The results are compared by simulating this micromixer structure using Navier–Stokes equations. The experimental results on the fabricated micromixers are also presented. The effects of relative roughness, fractal dimension and Reynolds number are discussed on laminar flow in hexagonal passive micromixers. The study concludes the importance of modeling surface roughness effect for better mixing efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bhagat AAS, Papautsky I (2008) Enhancing particle dispersion in a passive planar micromixer using rectangular obstacles. J Micromech Microeng 18: 085005 doi:10.1088/0960-1317/18/8/085005

  • Bahrami M, Yovanovich MM, Culham JR (2006) Pressure drop of fully-developed, laminar flow in microchannels of arbitrary cross-section. J Fluids Eng 128(5):1036–1044. doi:10.1115/1.2234786

    Article  Google Scholar 

  • Barrat JL, Bocquet L (1999) Large slip effect at a nonwetting fluid–solid interface. Phys Rev Lett 82:4671

    Article  Google Scholar 

  • Bau HH, Zhong J, Yi M (2001) A minute magneto hydrodynamic (MHD) mixer. Sens Actuators B 79(2-3):205–213

    Article  Google Scholar 

  • Bhagat A, Papautsky I (2008) Enhancing particle dispersion in a passive planar micromixer using rectangular obstacles. J Micromech Microeng 18: 085005. http://dx.doi.org/10.1088/0960-1317/18/8/085005

  • Croce G, D’Agaro P (2005) Numerical simulation of roughness effect on microchannel heat transfer and pressure drop in laminar flow. J Phys D Appl Phys 38:1518–1530

    Article  Google Scholar 

  • Daghighi Y, Li D (2013) Numerical study of a novel induced-charge Electrokinetic micromixer. Anal Chim Acta 763:28–37

    Article  Google Scholar 

  • Karniadakis G, Beskok A, Aluru N (2005) Microflows and Nanoflows: fundamentals and simulation. Springer Publication

  • Gobby D, Angeli P, Gavriilidis A (2001) Mixing characteristics of T-type microfluidic mixers. J Micromech Microeng 11:126–132

    Article  Google Scholar 

  • Heinbuch U, Fischer J (1989) Liquid flow in pores: slip, no-slip, or multilayer sticking. Phys Rev A 40:1144

    Article  Google Scholar 

  • Kleinstreuer C, Koo J (2004) Computational analysis of wall roughness effects for liquid flow in micro-conduits. J Fluids Eng 126(1):1–9. doi:10.1115/1.1637633

    Article  Google Scholar 

  • Li C, Chen T (2005) Simulation and optimization of chaotic micromixer using lattice Boltzmann method. Sens Actuators B 106:871–877

    Article  Google Scholar 

  • Majumdar A, Tien CL (1990) Fractal characterization and simulation of rough surfaces. Wear 136:313–327

    Article  Google Scholar 

  • Ansari MA, Kim1 K-Y, Anwar K, Kim SM (2010) A novel passive micromixer based on unbalanced splits and collisions of fluid streams. J Micromech Microeng 20: 055007. doi:10.1088/0960-1317/20/5/055007

  • Nguyen N-T (2008) Micromixer: fundamentals, design and fabrication, William Andrew Inc

  • Okkels F, Tabeling P (2004) Spatiotemporal resonances in mixing of open viscous fluidics. Phys Rev Lett 92:038301

    Article  Google Scholar 

  • Patrikar R (2004) Modeling and simulation of surface roughness. Appl Surf Sci 228:213–220

    Article  Google Scholar 

  • Succi S (2001) The Lattice Boltzmann equation for fluid dynamics and beyond, Oxford University Press

  • Sukop MC, Thorne DT (2006) Lattice Boltzmann Modeling, Springer, Berlin

  • Sun M, Ebner C (1992) Molecular dynamics study of flow at a fluid-wall interface. Phys Rev Lett 69:3491

    Article  Google Scholar 

  • Travis KP, Todd BD, Evans DJ (1997) Departure from Navier–Stokes hydrodynamics in confined liquids. Phys Rev E 55:4288

    Article  Google Scholar 

  • Tsai JH, Lin L (2002) Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump. Sens Actuat A-Phys 97–98:665–671

    Article  Google Scholar 

  • Wong SH, Ward MCL, Wharton CW (2004) Micro T-mixer as a rapid mixing micromixer. Sens Actuators B 100:365–385

    Article  Google Scholar 

  • Wu JJ (2000) Simulation of rough surfaces with FFT. Tribol Int 33(1):47–58

    Article  Google Scholar 

  • Wu Z, Nguyen NT, Huang XY (2004) Non-linear diffusive mixing in microchannels: theory and experiments. J Micromech Microeng 14:04. doi:10.1088/0960-1317/14/4/022

    Google Scholar 

  • Yaralioglu GG, Wygant IO, Marentis TC, Khuri-Yakub BT (2004) Ultrasonic mixing in microfluidic channels using integrated transducers. Anal Chem 76(13):3694–3698. doi:10.1021/ac035220k

    Article  Google Scholar 

  • Yong Shi, Zhao TS, Guo ZL (2006) Lattice Boltzmann method for incompressible flows with large pressure gradients. Phys Rev E 73:026704

    Article  Google Scholar 

  • Zhu YX, Granick S (2002) Limits of the hydrodynamic no-slip boundary condition. Phys Rev Lett 88:106102

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank VNIT for their continued support. Authors would like to thank ADA for providing the necessary CAD tools through NPMASS initiative. Authors are grateful to CEN, IIT Bombay and Department of Mechanical Engineering, IIT Bombay for providing the opportunity to carry out fabrication of microfluidic devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Pendharkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pendharkar, G., Deshmukh, R. & Patrikar, R. Investigation of surface roughness effects on fluid flow in passive micromixer. Microsyst Technol 20, 2261–2269 (2014). https://doi.org/10.1007/s00542-013-1957-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1957-y

Keywords

Navigation