Skip to main content
Log in

Disposable microfluidic blood cuvette for measuring hemoglobin concentration

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents a new air-bubble free microfluidic blood cuvette for the measurement of hemoglobin concentration. The microfluidic blood cuvette was filled with blood samples by capillary force, and hemoglobin levels in the blood were determined by measuring absorbance at the wavelength of 530 nm. Two different microfluidic blood cuvettes with dual and single sidewall microchannels were investigated. The microfluidic blood cuvette was fabricated using a polymethyl methacrylate substrate and a dry film photoresist. During the blood-filling process, air was trapped in the dual-sided wall-type cuvettes, while no air trapping occurred in the single sidewall-type cuvettes. The sensitivity of the hemoglobin measurements was more linear in a 105 μm deep microchannel than in a 35 μm deep microchannel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baldwin JGJ (1989) True anemia: incidence and significance in the elderly. Geriatrics 44:33–36

    Google Scholar 

  • Brown L, Koerner T, Horton JH, Oleschuk RD (2006) Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Lab Chip 6:66–73. doi:10.1039/b512179e

    Article  Google Scholar 

  • Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7:41–57. doi:10.1039/b611455e

    Article  Google Scholar 

  • Chuang Y-C, Lan K-C, Hsieh K-M et al (2012) Detection of glycated hemoglobin (HbA1c) based on impedance measurement with parallel electrodes integrated into a microfluidic device. Sens Actuators B Chem 171–172:1222–1230. doi:10.1016/j.snb.2012.06.084

    Article  Google Scholar 

  • DeMaeyer E, Adiels-Tegman M (1985) The prevalence of anaemia in the world. World Health Stat Q 38:302–316

    Google Scholar 

  • Flachsbart BR, Wong K, Iannacone JM et al (2006) Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab Chip 6:667–674. doi:10.1039/b514300d

    Article  Google Scholar 

  • Huang C-J, Chien H-C, Chou T-C, Lee G-B (2010) Integrated microfluidic system for electrochemical sensing of glycosylated hemoglobin. Microfluid Nanofluid 10:37–45. doi:10.1007/s10404-010-0644-x

    Article  MATH  Google Scholar 

  • Iwasaka M, Miyakoshi J, Ueno S (2001) Optical absorbance of hemoglobin and red blood cell suspensions under magnetic fields. IEEE Trans Magn 37:2906–2908

    Article  Google Scholar 

  • Kim D, Choi J, Nam M, Yang J (2011) LED and CMOS image sensor based hemoglobin concentration measurement technique. Sens Actuators B Chem 157:103–109. doi:10.1016/j.snb.2011.03.032

    Article  Google Scholar 

  • Lipschitz D a, Udupa KB, Milton KY, Thompson CO (1984) Effect of age on hematopoiesis in man. Blood 63:502–509

    Google Scholar 

  • Noda T, Takao H, Yoshioka K et al (2006) Performance of absorption photometry microchip for blood hemoglobin measurement integrated with processing circuits and Si(110) 45° mirrors. Sens Actuators B Chem 119:245–250. doi:10.1016/j.snb.2005.12.017

    Article  Google Scholar 

  • Son SU, Seo J-H, Choi YH, Lee SS (2006) Fabrication of a disposable biochip for measuring percent hemoglobin A1c (%HbA1c). Sens Actuators A 130–131:267–272. doi:10.1016/j.sna.2006.02.028

    Article  Google Scholar 

  • Stamatoyannopoulos G (1972) Molecular basis of hemoglobin disease. Annu Rev Genet 165:47–70

    Article  Google Scholar 

  • Steigert J, Grumann M, Dube M et al (2006) Direct hemoglobin measurement on a centrifugal microfluidic platform for point-of-care diagnostics. Sens Actuators A 130–131:228–233. doi:10.1016/j.sna.2006.01.031

    Article  Google Scholar 

  • Stone JE, Simmons WK, Jutsum PJ, Gurney JM (1984) An evaluation of methods of screening for anaemia. Bull World Health Organ 62:115–120

    Google Scholar 

  • Tietz NW (1987) Fundamentals of clinical chemistry, 3rd edn. p 411

  • Timm U, Leen G, Lewis E et al (2010) Non-invasive optical real-time measurement of total hemoglobin content. Proced Eng 5:488–491. doi:10.1016/j.proeng.2010.09.153

    Article  Google Scholar 

  • Tsai Y-C, Jen H-P, Lin K-W, Hsieh Y-Z (2006) Fabrication of microfluidic devices using dry film photoresist for microchip capillary electrophoresis. J Chromatogr A 1111:267–271. doi:10.1016/j.chroma.2005.12.003

    Article  Google Scholar 

  • Tsao CW, Hromada L, Liu J et al (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7:499–505. doi:10.1039/b618901f

    Article  Google Scholar 

  • Tudos aJ, Besselink GJ, Schasfoort RB (2001) Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1:83–95. doi:10.1039/b106958f

    Article  Google Scholar 

  • Van Lerberghe W, Keegels G, Cornelis G et al (1983) Haemoglobin measurement: the reliability of some simple techniques for use in a primary health care setting. Bull World Health Organ 61:957–965

    Google Scholar 

  • Von Schenck H, Falkensson M, Lundberg B (1986) Evaluation of “HemoCue”, a new device for determining hemoglobin. Clin Chem 32:526–529

    Google Scholar 

  • Vulto P, Glade N, Altomare L et al (2005) Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips. Lab Chip 5:158–162. doi:10.1039/b411885e

    Article  Google Scholar 

  • Yip R (1994) Iron deficiency: contemporary scientific issues and international programmatic approaches. J Nutr 124:1479S–1490S

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Education, Science and Technology and the Korea Institute for Advancement of Technology through the Human Resource Training Project for Regional Innovation and supported by the Human Resources Development program (No. 20134030200240) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy. This work was also supported by Kangwon National University, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong Hee Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.J., Son, J.K., Seo, Y.H. et al. Disposable microfluidic blood cuvette for measuring hemoglobin concentration. Microsyst Technol 20, 499–504 (2014). https://doi.org/10.1007/s00542-013-1954-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1954-1

Keywords

Navigation