Advertisement

Microsystem Technologies

, Volume 20, Issue 3, pp 515–520 | Cite as

Size effect on mechanical properties of TiO2 capped nanotubes investigated using in situ transmission electron microscopy

  • Shao-Hui Kang
  • Te-Hua FangEmail author
  • Tao-Hsing Chen
  • Yu-Jen Hsiao
  • Zheng-Han Hong
  • Cheng-Hsin Chuang
  • Lucio Riccobono
Technical Paper

Abstract

In situ transmission electron microscopy nanoindentation tests are used to measure the compressive fracture and mechanical properties of individual titanium oxide (TiO2) capped nanotubes. The average critical loads ranged from 3.6 to 9.6 μN. Individual TiO2 capped nanotubes with lengths of 8–10 μm were found to have Young’s modulus values of ~2.2–9.4 GPa and work energy values of ~3.1–6.6 × 10−13 J. The results indicate that the Young’s modulus and tensile strength depend on capped nanotube length.

Keywords

TiO2 TiO2 Nanotubes Ammonium Fluoride Titanium Foil Electrochemical Anodization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially supported by the National Science Council of Taiwan under grants NSC 100-2811-E-151-001 and NSC 100-2628-E-151-003-MY3 and by the Center for Micro/Nano Science and Technology.

References

  1. Balaur E, Macak JM, Tsuchiya H, Schmuki P (2005) Wetting behaviour of layers of TiO2 nanotubes with different diameters. J Mater Chem 15:4488–4491CrossRefGoogle Scholar
  2. Chang WY, Fang TH, Chiu ZW, Hsiao YJ, Ji LW (2011) Nanomechanical properties of array TiO2 nanotubes. Microporous Mesoporous Mater 145:87–92CrossRefGoogle Scholar
  3. Crawford GA, Chawla N, Das K, Bose S, Bandyopadhyay A (2007) Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Acta Biomater 3:359–367CrossRefGoogle Scholar
  4. Fox RL, Kapoor MP (1968) Rates of change of eigenvalues and eigenvectors. J AIAA 6:2426–2429CrossRefzbMATHGoogle Scholar
  5. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16:3331–3334CrossRefGoogle Scholar
  6. Greer JR, De Hosson JTM (2011) Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci 56:654–724CrossRefGoogle Scholar
  7. Han SC, Doh JM, Yoon JK, Kim GH, Byun JY, Han SH, Hong KT, Kwun SI (2009) Highly ordered self-organized TiO2 nanotube arrays prepared by a multi-step anodic oxidation process. Met Mater Int 15:493–499CrossRefGoogle Scholar
  8. Haslach HW Jr, Armstrong RW (2004) Deformable bodies and their material behavior. Wiley, New York, p 496Google Scholar
  9. Kang SH, Kim HS, Kim JY, Sung YE (2009) An investigation on electron behavior employing vertically-aligned TiO2 nanotube electrodes for dye-sensitized solar cells. Nanotechnology 20:355307CrossRefGoogle Scholar
  10. Kang SH, Fang TH, Chen TH, Kuo CH (2013) Size effect on nanomechanical properties of ZnO cones using in situ transmission electron microscopy. Curr Appl Phys 13:1689–1696CrossRefGoogle Scholar
  11. Kim YJ, Son K, Choi IC, Choi IS, Park WI, Jang JI (2011) Exploring nanomechanical behavior of silicon nanowires: AFM bending versus nanoindentation. Adv Funct Mater 21:279–286CrossRefGoogle Scholar
  12. Li SQ, Zhang GM, Guo DZ, Yu LG, Zhang W (2009) Anodization fabrication of highly ordered. TiO2 nanotubes. J Phys Chem C 113:12759–12765CrossRefGoogle Scholar
  13. Mor GK, Varghese OK, Paulose M, Mukherjee N, Grimes CA (2003) Fabrication of tapered, conical-shaped titania nanotubes. J Mater Res 18:2588–2593CrossRefGoogle Scholar
  14. Mor GK, Varghese OK, Paulose M, Shankar K, Grimes CA (2006) A review on highly-ordered TiO2 nanotube-arrays: fabrication, material properties, and solar energy applications. Sol Energy Mater Sol Cells 90:2011–2075CrossRefGoogle Scholar
  15. Rahai AR, Kazemi S (2008) Buckling analysis of non-prismatic columns based on modified vibration modes. Commun Nonlinear Sci Numer Simul 13:1721–1735CrossRefzbMATHGoogle Scholar
  16. Roy P, Dey T, Schmuki P (2010) Scanning electron microscopy observation of nanoscopic wetting of TiO2 nanotubes and ODS modified nanotubes using ionic liquids. Electrochem Solid State Lett 13:E11–E13CrossRefGoogle Scholar
  17. Shokuhfar T, Arumugam GK, Heiden PA, Yassar RS, Friedrich C (2009) Direct mechanical behavior measurements of individual titanium oxide nanotubes. ACS Nano 3:3098–3102CrossRefGoogle Scholar
  18. Sreekantan S, Lockman Z, Hazan R, Tasbihi M, Tong LK, Mohamed AR (2009) Influence of electrolyte pH on TiO2 nanotube formation by Ti anodization. J Alloy Compd 485:478–483CrossRefGoogle Scholar
  19. Varghese OK, Gong D, Paulose M, Ong KGC, Grimes A (2003) Hydrogen sensing using titania nanotubes. Sens Actuators B 93:338–344CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shao-Hui Kang
    • 1
  • Te-Hua Fang
    • 1
    Email author
  • Tao-Hsing Chen
    • 1
  • Yu-Jen Hsiao
    • 2
  • Zheng-Han Hong
    • 3
  • Cheng-Hsin Chuang
    • 4
  • Lucio Riccobono
    • 5
  1. 1.Department of Mechanical EngineeringNational Kaohsiung University of Applied SciencesKaohsiungTaiwan
  2. 2.National Nano Device LaboratoriesTainanTaiwan
  3. 3.Mold and Precision Machining Technology Section, Micro/Meso Mechanical Manufacturing R&D DepartmentMetal Industries Research and Development Centre (MIRDC)KaohsiungTaiwan
  4. 4.Department of Mechanical EngineeringSouthern Taiwan UniversityTainanTaiwan
  5. 5.Department of Sciences of the Civil Engineering and ArchitecturePolytechnic of BariBariItaly

Personalised recommendations