Microsystem Technologies

, Volume 20, Issue 1, pp 157–168 | Cite as

Theoretical and numerical investigations of an electroosmotic flow micropump with interdigitated electrodes

  • Ujjal Barman
  • Ashis K. SenEmail author
  • Subhash C. Mishra
Technical Paper


In this work, an electroosmotic flow micropump is proposed and investigated using theoretical analysis and numerical simulations. The micropump comprises an array of interdigitated electrodes on the top and the bottom surfaces of a rectangular microchannel. Theoretical analysis and extensive numerical simulations are performed to predict the pressure-flow characteristics of the micropump. The results of the model and simulations are compared which show good agreement with each other. The effects of various geometrical parameters including spacing between a pair of electrodes, gap between adjacent pairs of electrodes, width and height of the electrodes, and width of the microchannel and operating parameter including applied voltage on the performance of the micropump in terms of flow and pressure capacity is investigated.


Applied Voltage Electrical Double Layer Electrode Configuration Maximum Flow Rate Interdigitated Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank the Science and Engineering Research Council (SERC), Department of Science & Technology for providing the financial support for the project.


  1. Arulanandam S, Li D (2000) Liquid transport in rectangular microchannels by electroosmotic pumping. Colloids Surf A 161:89–102 PII: S0927-7757(99)00328-3CrossRefGoogle Scholar
  2. Bagdi P, Bhardwaj P, Sen AK (2012) Analysis and simulation of a micro hydrocyclone device for particle liquid separation. J Fluids Eng 134:0211051–0211059Google Scholar
  3. Bhardwaj P, Bagdi P, Sen AK (2011) Microfluidic device based on a micro hydrocyclone for particle–liquid separation. Lab Chip 11:4012–4021CrossRefGoogle Scholar
  4. Brask A, Goranović G, Bruus H (2003) Theoretical analysis of the low-voltage cascade electro-osmotic pump. Sens Actuators B 92:127–132. doi: 10.1016/S0925-4005(03)00130-8 CrossRefGoogle Scholar
  5. Bruus H (2008) Theoretical microfluidics. Oxford master series condensed matter physicsGoogle Scholar
  6. Buie C, Posner JD, Fabian T, Cha SW, Kim D, Prinz FB, Eaton JK, Santiago JG (2006) Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping. J Power Sources 161:191. doi: 10.1016/j.jpowsour.2006.03.02 CrossRefGoogle Scholar
  7. Chen CH, Santiago JG (2002) A planar electroosmotic micropump. J Microelectromech Syst 11:672–683. doi: 10.1109/JMEMS.2002.805055 CrossRefGoogle Scholar
  8. Darabi J, Rhodes C (2006) CFD modeling of an ion-drag micropump. Sens Actuators A 127:94–103. doi: 10.1016/j.sna.2005.10.051 CrossRefGoogle Scholar
  9. Darabi J, Wang H (2002) Emerging opportunities and challenges in micropumps. In: Proceedings of IMECE2002 ASME international mechanical engineering congress and exposition, IMECE2002-39586Google Scholar
  10. Guo Q, Liu Y, Wu X, Yang J (2009) Design of a relaying electroosmosis pump driven by low-voltage DC. Microsyst Technol 15:1009–1015. doi: 10.1007/s00542-009-0840-3 CrossRefGoogle Scholar
  11. Jiang LN, Mikkelsen J, Koo JM, Huber D, Yao SH, Zhang L, Zhou P, Maveety JG, Prasher R, Santiago JG, Kenny TW, Goodson KE (2002) Closed-loop electroosmotic microchannel cooling system for VLSI circuits. IEEE Trans Compon Packag Technol 25:347. doi: 10.1109/TCAPT.2002.80059 CrossRefGoogle Scholar
  12. Kemprai P, Sen AK (2012) Electrokinetic assisted mixing in a microchannel with lateral electrodes. Micro Nanosyst 4(4):304–313Google Scholar
  13. Kim D, Posner JD, Santiago JG (2008) High flow rate per power electroosmotic pumping using low ion density solvents. Sens Actuators A 141:201–212. doi: 10.1016/j.sna.2007.07.023 CrossRefGoogle Scholar
  14. Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):35–64. doi: 10.1088/0960-1317/14/6/R01 CrossRefGoogle Scholar
  15. Probstein (1994) Physicochemical hydrodynamics an introduction, 2nd edn. Wiley, Massachusetts Institute of Technology, New YorkGoogle Scholar
  16. Ramos A, Morgan H, Green NG, Castellanos A (1999) AC electric field-induced fluid flow in microelectrodes. J Colloid Interface Sci 217(2):420–422. doi: 10.1006/jcis.1999.6346 CrossRefGoogle Scholar
  17. Sahu PK, Golia A, Sen AK (2012a) Analytical, numerical and experimental investigations of mixing fluids in microchannel. Microsyst Technol 18:823–832. doi: 10.1007/s00542-012-1511-3 CrossRefGoogle Scholar
  18. Sahu PK, Golia A, Sen AK (2012b) Investigations into mixing of fluids in microchannels with lateral obstructions. Microsyst Technol. doi: 10.1007/s00542-012-1617-7 Google Scholar
  19. Schoeman JJ, van Staden JF (1997) Electroosmotic pumping of sodium chloride solutions. J Membr Sci 132:1–21 Pii: S0376-7388(96)00339-0CrossRefGoogle Scholar
  20. Sun Y, Lim CS, Liu AQ, Ayi TC, Yap PH (2007) Design, simulation and experiment of electroosmotic microfluidic chip for cell sorting. Sens Actuators A 133:340–348. doi: 10.1016/j.sna.2006.06.047 CrossRefGoogle Scholar
  21. Takamura Y, Onoda H, Inokuchi H, Adachi S, Oki A, Horiike Y (2001) In: Ramsey JM, van den Berg A (eds) Proceedings of the mTAS 2001, Monterey, CA, USA. Kluwer Academic Publishers, Dordrecht, p 230Google Scholar
  22. Theeuwes F (1975) Elementary osmotic pump. J Pharm Sci 64:1987–1991. doi: 10.1002/jps.2600641218 CrossRefGoogle Scholar
  23. Wang P, Chen Z, Chang HC (2006) A new electro-osmotic pump based on silica Monoliths. Sens Actuators B 113:500–509. doi: 10.1016/j.snb.2005.03.102 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ujjal Barman
    • 1
  • Ashis K. Sen
    • 2
    Email author
  • Subhash C. Mishra
    • 1
  1. 1.Department of Mechanical EngineeringIIT GuwahatiGuwahatiIndia
  2. 2.Department of Mechanical EngineeringIIT MadrasChennaiIndia

Personalised recommendations