Skip to main content
Log in

Tracking control of a precision stage with integral sliding-mode friction estimator

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This work concerns the development of a integral sliding-mode tracking controller with friction estimator for a precision positioning stage. This stage is supported by cross roller guides, therefore, one of the main disturbances during dynamic motion is the friction force. In order to overcome the uncertainties and the effect of friction, an integral sliding-mode controller with uncertainty and disturbance estimation scheme is designed to control the motion of the stage. Comparing with conventional PID controllers, the experimental results show that with this controller the tracking errors can be reduced significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Bender F, Swevers J (2008) Characterization of friction force dynamics. IEEE Control Syst Mag 28:64–81

    Article  MathSciNet  Google Scholar 

  • Al-Bender F, Lampaert V, Swevers J (2005) The generalized Maxwell-Slip model: a novel model for friction simulation and compensation. IEEE Trans Autom Control 50:1883–1887

    Article  MathSciNet  Google Scholar 

  • Armstrong-Heouvry B, Dupont P, De Wit C (1994) A survey of models, analysis tools and compensation methods for control of machines with friction. Automatica 30:1083–1138

    Article  Google Scholar 

  • Astrom K, Canudas de Wit C (2008) Revisiting the LuGre friction model. IEEE Control Syst Mag 28:101–114

    Article  MathSciNet  Google Scholar 

  • Canudas de Wit C, Olsson H, Astrom K, Lischinsky P (1995) A new model for control of systems with friction. IEEE Trans Autom Control 40:419–425

    Article  MathSciNet  MATH  Google Scholar 

  • Chen SL, Tan KK, Huang S (2009) Friction modeling and compensation of servo mechanical system with dual-relay feedback approach. IEEE Trans Control Syst Technol 17:1295–1305

    Article  Google Scholar 

  • Dahl P (1968) A solid friction model, Tech. Rep. The Aerospace Corp., El Segundo

    Google Scholar 

  • De Wit C, Lischinsky P (1997) Adaptive friction compensation with partially known dynamic model. Int J Adapt Control Signal Process 11:65–80

    Article  MATH  Google Scholar 

  • Hensen R, van de Molengraft M, Steinbuch M (2003) Friction induced hunting limit cycle: a comparison between the LuGre and switch function model. Automatica 39:2131–2137

    Article  MATH  Google Scholar 

  • Kim SJ, Kim SY, Ha IJ (2004) An efficient identification method for friction in single-DOF motion control system. IEEE Trans Control Syst Technol 12:555–563

    Article  Google Scholar 

  • Lampaert V, Swevers J, AlBender F (2002) Modification of the Leuven integrated friction model structure. IEEE Trans Autom Control 47:683–687

    Article  MathSciNet  Google Scholar 

  • Lin CJ, Lee CY (2011) Observer-based robust controller design and realization of a gantry stage. Mechatronics 21:185–203

    Article  Google Scholar 

  • Misovec K, Ammaswamy A (1998) Friction compensation using adaptive non-linear control with persistent excitation. Proceedings of the 1998 American Control Conference

  • Olsson H, Astrom K (2001) Friction generated limit cycles. IEEE Trans Control Syst Technol 9:629–636

    Article  Google Scholar 

  • Ramasubramaniam A, Ray L (2001) Stability and performance analysis of non-model-based friction estimators. Proceedings of the IEEE conference on decision and control

  • Rastko R, Lewis F (2002) Neural-network approximation of piecewise continuous functions: application to friction compensation. IEEE Trans Neural Netw 13:745–751

    Article  Google Scholar 

  • Ray L, Ramasubrabraniam A, Townsend J (2001) Adaptive friction compensation using extended Kalman–Bucy filter friction estimation. Control Eng Pract 9:169–179

    Article  Google Scholar 

  • Rizos D, Fassois S (2004) Presliding friction identification based on the Maxwell Slip model. Chaos Interdiscip J Nonlinear Sci 14:431–445

    Article  MathSciNet  MATH  Google Scholar 

  • Rizos D, Fassois S (2009) Friction identification based upon the LuGre and Maxwell-Slip models. IEEE Trans Control Syst Technol 17:153–160

    Article  Google Scholar 

  • Swevers J, Al-Bender F, Ganseman C, Prajogo T (2000) An integrated friction model with improved presliding behavior for accurate friction compensation. IEEE Trans Autom Control 45:675–686

    Article  MathSciNet  MATH  Google Scholar 

  • Utkin V, Shi J (1996) Integral sliding mode in systems operating under uncertainty conditions. Proceedings of the 35th conference on decision and control

  • Utkin V, Guldner J, Shi J (1999) Sliding mode control in electromechanical systems. Taylor & Francis, London

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Science Council of Taiwan under project NSC-100-2221-E-150-031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Chung Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, JC., Yan, CC. Tracking control of a precision stage with integral sliding-mode friction estimator. Microsyst Technol 19, 1731–1736 (2013). https://doi.org/10.1007/s00542-013-1858-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1858-0

Keywords

Navigation