Tanner DM et al (2000) MEMS reliability in shock environments. Reliability physics symposium. In: proceedings of the 38th annual 2000 IEEE international 129–138. doi:10.1109/RELPHY.2000.843903
Alsaleem F, Younis MI, Miles R (2008) An investigation into the effect of the PCB motion on the dynamic response of MEMS devices under mechanical shock loads. Electron Packag Trans ASME 130(3):0310021–03100210. doi:10.1115/1.2957319
Google Scholar
Brown TG (2003) Harsh military environments and microelectromechanical (MEMS) devices. In: proceedings of the IEEE Sensors 2: 753–760. doi:10.1109/ICSENS.2003.1279042
Chen Y et al (2005) A novel tuning fork gyroscope with high Q-factors working at atmospheric pressure. Microsyst Technol 11:111–116. doi:10.1007/s00542-004-0438-8
Article
Google Scholar
Chouvion B, Fox CHJ, William SM, Popov AA (2010) In-plane free vibration analysis of combined ring-beam structural systems by wave propagation. J Sound Vib 329:5087–5104. doi:10.1016/j.jsv.2010.05.023
Article
Google Scholar
Corigliano A, Cacchione F, Frangi A, Zerbini S (2008) Numerical modelling of impact rupture in polysilicon microsystems. Comput Mech 42(2):251–259. doi:10.1007/s00466-007-0231-5
Article
MATH
Google Scholar
Ghisi A, Fachin F, Mariani S, Zerbini S (2009) Multi-scale analysis of polysilicon MEMS sensors subject to accidental drops: effect of packaging. Microelectron Reliab 49(3):340–349. doi:10.1016/j.microrel.2008.12.010
Article
Google Scholar
Hartzell A, Woodilla D (1999) Reliability methodology for prediction of micromachined accelerometer stiction. In: proceedings of the reliability physics symposium, pp 202–205. doi:10.1109/RELPHY.1999.761613
Hartzell A, Silva MG, Shea HR (2011) MEMS reliability. New York, pp 85–110. doi:10.1007/978-1-4419-6018-4
Jiang T, Wang AL, Jiao JW, Liu GJ (2006) Detection capacitance analysis method for tuning fork micromachined gyroscope based on elastic body model. Sens Actuators A 128:52–59. doi:10.1016/j.sna.2006.01.007
Article
Google Scholar
Jiang T, Zhou J, Feng F (2012) Study on designs of stoppers for MEMS devices in shock environment. Appl Mech Mater 184(185):510–515. doi:10.4028/www.scientific.net/AMM.184-185.510
Article
Google Scholar
Kimberley J, Cooney RS, Lambros J, Chasiotis I, Barker NS (2009) Failure of Au RF-MEMS switches subjected to dynamic loading. Sens Actuators, A 154:140–148. doi:10.1016/j.sna.2009.06.004
Article
Google Scholar
Mariani S et al (2008) A three-scale FE approach to reliability analysis of MEMS. Meccanica 43:469–483. doi:10.1007/s11012-008-9111-0
Article
MATH
Google Scholar
Sang WY (2009) Vibration isolation and shock protection for MEMS. Dissertation, University of Michigan
Sang WY, Yazdi N, Perkins NC, Najafi K (2006) Micromachined integrated shock protection for MEMS. Sens Actuators A 130–131:166–175. doi:10.1016/j.sna.2005.12.032
Google Scholar
Scaysbrook IW, Cooper SJ, Whitley ET (2004) A miniature, gun-hard MEMS IMU for guided projectiles, rockets and missiles. In: proceeding of the position location and navigation symposium, PLANS 26–34. doi:10.1109/PLANS.2004.1308970
Shi YB, Zhu ZQ, Liu XP, Du K, Liu J (2010) Design and impact analysis of a high-g accelerometer. Explos Shock Waves 30(3):329–332. doi:001-1455(2010)03-0329-04
Google Scholar
Srikar VT, Senturia SD (2002) The reliability of microelectromechanical systems (MEMS) in shock environments. J Microelectromech Syst 11(3):206–214. doi:10.1109/JMEMS.2002.1007399
Article
Google Scholar
Stauffer JM (2006) Current capabilities of MEMS capacitive accelerometers in a harsh environment. IEEE Aerosp Electron Syst Mag 21(11):29–32. doi:10.1109/MAES.2006.284356
Article
Google Scholar
Sundaram S et al (2011) Vibration and shock reliability of MEMS: Modeling and experimental validation. J Micromech Microeng 21(4):1–13. doi:10.1088/0960-1317/21/4/045022
Article
MathSciNet
Google Scholar
Wagg DJ (2002) Application of non-smooth modelling techniques to the dynamics of a flexible impacting beam. J Sound Vib 256(5):803–820. doi:10.1006/jsvi.2002.5020
Article
Google Scholar
Yang ZX, Huang Y, Li XX, Chen GN (2009) Investigation and simulation on the dynamic shock response performance of packaged high-g MEMS accelerometer versus the impurity concentration of the piezoresistor. Microelectron Reliab 49(5):510–516. doi:10.1016/j.microrel.2009.02.018
Article
Google Scholar