Microsystem Technologies

, Volume 19, Issue 9–10, pp 1393–1399

Numerical investigation of slider dynamics induced by contacts with disk asperities

  • Wenping Song
  • Pablo A. Salas
  • Andrey Ovcharenko
  • Hao Zheng
  • Frank E. Talke
Technical Paper

Abstract

A time dependent Reynolds equation simulator combined with a finite element-based transient contact model between a slider and a disk asperity is used to study slider dynamics induced by contacts with disk asperities. The flying height change at the trailing edge of the slider is investigated as a function of asperity height, asperity diameter, and the spacing between the thermal protrusion of a thermal-flying control slider and a disk asperity. The effect of material properties of the disk asperities is studied. Slider vibrations corresponding to the first and the second pitch modes are excited by disk asperities.

References

  1. Canchi SV, Bogy DB (2010) Slider dynamics in the lubricant-contact regime. IEEE Trans Magn 46(3):764–769CrossRefGoogle Scholar
  2. Dai Q, Knigge B, Waltman RJ, Marchon B (2003) Time evolution of lubricant-slider dynamic interactions. IEEE Trans Magn 39(5):2459–2461CrossRefGoogle Scholar
  3. Fukuai S, Kaneko R (1988) Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation: first report—derivation of a generalized lubrication equation including thermal creep flow. ASME J Tribol 110(2):253–261CrossRefGoogle Scholar
  4. Gupta V, Bogy DB (2005) Dynamic of sub-5-nm air bearing sliders in the presence of electrostatic and intermolecular forces at the head-disk interface. IEEE Trans Magn 41(2):610–615CrossRefGoogle Scholar
  5. Hallquist JO (2006) LS-DYNA theoretical manual. Livermore Software Technology Corporation, LivermoreGoogle Scholar
  6. Jayson EM, Murphy JM, Smith PW, Talke FE (2002) Shock and head slap simulations of operational and nonoperational hard disk drives. IEEE Trans Magn 38(5):2150–2152CrossRefGoogle Scholar
  7. Jayson EM, Smith PW, Talke FE (2003a) Shock modeling of the head-media interface in an operational hard disk drive. IEEE Trans Magn 39(5):2429–2431CrossRefGoogle Scholar
  8. Jayson EM, Murphy JM, Smith PW, Talke FE (2003b) Effects of air bearing stiffness on a hard disk drive subject to shock and vibration. ASME J Tribol 125:343–349CrossRefGoogle Scholar
  9. Knigge BE, Talke FE (2001) Dynamics of transient events at head/disk interface. Tribol Int 34:453–460CrossRefGoogle Scholar
  10. Marchon B, Dai Q, Knigge B, Pit R (2007) Lubricant dynamics in the sub-nanometer clearance regime. IEEE Trans Magn 43(9):3694–3698CrossRefGoogle Scholar
  11. Ovcharenko A, Yang M, Chun K, Talke FE (2010) Simulation of magnetic erasure due to transient slider-disk contacts. IEEE Trans Magn 46(3):770–777CrossRefGoogle Scholar
  12. Sheng G, Dukkipati R, Pang J (2006) Nonlinear dynamics of sub-10 nm flying height air bearing slider in modern hard disk recording system. Mech Mach Theory 41:1230–1242MATHCrossRefGoogle Scholar
  13. Song W, Ovcharenko A, Yang M, Zheng H, Talke FE (2012a) Contact between a thermal flying height control slider and a disk asperity. Microsyst Technol. doi:10.1007/s00542-012-1591-0 Google Scholar
  14. Song W, Ovcharenko A, Knigge B, Yang M, Talke FE (2012b) Effect of contact conditions during thermo-mechanical contact between a thermal flying height control slider and a disk asperity. Tribol Int 55:100–107CrossRefGoogle Scholar
  15. Stupp SE, Baldwinson MA, Mcewen P (1999) Thermal asperity trends. IEEE Trans Magn 35(2):752–757CrossRefGoogle Scholar
  16. Su L, Hu Y, Lam EL, Li P, Ng RW, Liang D, Zheng O, Liu H, Deng Z, Zhang J (2011) Tribological and dynamic steady of head disk interface at sub-1-nm clearance. IEEE Trans Magn 47(1):111–116CrossRefGoogle Scholar
  17. Tanaka H, Yonemura S, Tokisue H (2001) Slider dynamics during continuous contact with textured and smooth disks in ultra low flying height. IEEE Trans Magn 37(2):906–911CrossRefGoogle Scholar
  18. Vakis AI, Hadjicostis CN, Polycarpou AA (2012) Three-DOF dynamic model with lubricant contact for thermal fly-height control nanotechnology. J Phys D Appl Phys 45:135402CrossRefGoogle Scholar
  19. Wahl MH (1994) Numerical and experimental investigation of the head/disk interface. PhD Dissertation, University of California, San DiegoGoogle Scholar
  20. Zheng J, Bogy DB (2010) Investigation of flying-height stability of thermal fly-height control sliders in lubricant or solid contact with roughness. Tribol Lett 38:283–289CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wenping Song
    • 1
    • 2
  • Pablo A. Salas
    • 2
  • Andrey Ovcharenko
    • 3
  • Hao Zheng
    • 3
  • Frank E. Talke
    • 2
  1. 1.Harbin Institute of TechnologyHarbinChina
  2. 2.Center for Magnetic Recording ResearchUniversity of CaliforniaSan DiegoUSA
  3. 3.Western Digital CorporationSan JoseUSA

Personalised recommendations