Advertisement

Microsystem Technologies

, Volume 20, Issue 2, pp 341–348 | Cite as

New approach for batch microfabrication of silicon-based micro fuel cells

  • N. Sabaté
  • J. P. Esquivel
  • J. SantanderEmail author
  • J. G. Hauer
  • R. W. Verjulio
  • I. Gràcia
  • M. Salleras
  • C. Calaza
  • E. Figueras
  • C. Cané
  • L. Fonseca
Technical Paper

Abstract

This paper reports a novel and straightforward approach to the development of a compact micro direct methanol fuel cell. The device consists of a hybrid polymer membrane as a feasible microintegrable electrolyte to be used together with silicon current collectors. These current collectors consist in microfabricated silicon chips that incorporate a fine electrode grid. The membrane combines two polymers with different functionalities, Nafion® as a proton conducting material and PDMS as a flexible mechanical support. The compatibility of this membrane with MEMS fabrication processes lies in the acknowledged bonding capabilities of the PDMS polymer to materials typically used in microsystems technologies—such as silicon, silicon dioxide and glass—as well as its ability to withstand variations of the Nafion® volume. The compatibility of all the components with microfabrication processes will permit the application of batch fabrication techniques for the whole device, so contributing to a significant lowering of the fabrication costs.

Keywords

Fuel Cell PDMS Current Collector Direct Methanol Fuel Cell Hybrid Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been possible thanks to the Micaela (TEC2009-14660-C02-01) project, Ministerio de Economía y Competitividad, Spanish Government, and FEDER, European Union. N. Sabaté and C. Calaza would like to thank the financial support received from their Ramón y Cajal postdoctoral programs.

References

  1. Aravamudhan S, Rahman ARA, Bhansali S (2005) Porous silicon based orientation independent, self-priming micro direct ethanol fuel cell. Sensor Actuat A-Phys 123–124:497–504. doi: 10.1016/j.sna.2005.03.069 CrossRefGoogle Scholar
  2. Chan SH, Nguyen NT, Xia ZT, Wu ZG (2005) Development of a polymeric micro fuel cell containing laser-micromachined flow channels. J Micromech Microeng 15(1):231–236. doi: 10.1088/0960-1317/15/1/032 CrossRefGoogle Scholar
  3. Chang C-L, Chang T-C, Ho W-Y, Hwang JJ, Wang D-Y (2006) Electrochemical performance of PEM fuel cell with Pt–Ru electro-catalyst layers deposited by sputtering. Surf Coat Tech 201(7):4442–4446. doi: 10.1016/j.surfcoat.2006.08.036 CrossRefGoogle Scholar
  4. Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110(6):3767–3804. doi: 10.1021/cr9003902 CrossRefGoogle Scholar
  5. Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17(4):043001. doi: 10.1088/0964-1726/17/4/043001 CrossRefGoogle Scholar
  6. Esquivel JP, Sabaté N, Santander J, Torres N, Cané C (2008) Fabrication and characterization of a passive silicon-based direct methanol fuel cell. Microsyst Technol 14(4–5):535–541. doi: 10.1007/s00542-007-0451-9 CrossRefGoogle Scholar
  7. Esquivel JP, Sabaté N, Santander J, Torres-Herrero N, Gràcia I, Ivanov P, Fonseca L, Cané C (2009a) Influence of current collectors design on the performance of a silicon-based passive micro direct methanol fuel cell. J Power Sour 194(1):391–396. doi: 10.1016/j.jpowsour.2009.04.065 CrossRefGoogle Scholar
  8. Esquivel JP, Sabaté N, Tarancón A, Torres-Herrero N, Dávila D, Santander J, Gràcia I, Cané C (2009b) Hybrid polymer electrolyte membrane for silicon-based micro fuel cells integration. J Micromech Microeng 19(6):065006. doi: 10.1088/0960-1317/19/6/065006 CrossRefGoogle Scholar
  9. Esquivel JP, Senn T, Hernández-Fernández P, Santander J, Lörgen M, Rojas S, Löchel B, Cané C, Sabaté N (2010) Towards a compact SU-8 micro-direct methanol fuel cell. J Power Sour 195(24):8110–8115. doi: 10.1016/j.jpowsour.2010.07.050 CrossRefGoogle Scholar
  10. Evans SAG, Terry JG, Plank NOV, Walton AJ, Keane LM, Campbell CJ, Ghazal P, Beattie JS, Su T-J, Crain J, Mount AR (2005) Electrodeposition of platinum metal on TiN thin films. Electrochem Commun 7(2):125–129. doi: 10.1016/j.elecom.2004.11.014 CrossRefGoogle Scholar
  11. Feng Y, Gago A, Timperman L, Alonso-Vante N (2011) Chalcogenide metal centers for oxygen reduction reaction: activity and tolerance. Electrochim Acta 56(3):1009–1022. doi: 10.1016/j.electacta.2010.09.085 CrossRefGoogle Scholar
  12. Gago A, Gochi-Ponce Y, Feng Y, Esquivel JP, Sabaté N, Santander J, Alonso-Vante N (2012) Tolerant chalcogenide cathodes of membraneless micro fuel cells. Chem Sus Chem 5(8):1488–1494. doi: 10.1002/cssc.201200009 CrossRefGoogle Scholar
  13. Jeng K-T, Chien C–C, Hsu N-Y, Yen S-C, Chiou S-D, Lin S-H, Huang W-M (2006) Performance of direct methanol fuel cell using carbon nanotube-supported Pt–Ru anode catalyst with controlled composition. J Power Sour 160(1):97–104. doi: 10.1016/j.jpowsour.2006.01.057 CrossRefGoogle Scholar
  14. Kamarudin SK, Daud WRW, Ho SL, Has UA (2007) Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC). J Power Sour 163(2):743–754. doi: 10.1016/j.jpowsour.2006.09.081 CrossRefGoogle Scholar
  15. Kim H, Subramanian NP, Popov BN (2004) Preparation of PEM fuel cell electrodes using pulse electrodeposition. J Power Sour 138(1–2):14–24. doi: 10.1016/j.jpowsour.2004.06.012 CrossRefGoogle Scholar
  16. Kloke A, von Stetten F, Zengerle R, Kerzenmacher S (2011) Strategies for the fabrication of porous platinum electrodes. Adv Mater 23(43):4976–5008. doi: 10.1002/adma.201102182 CrossRefGoogle Scholar
  17. Kouassi S, Gautier G, Thery J, Desplobain S, Borella M, Ventura L, Laurent J-Y (2012) Proton exchange membrane micro fuel cells on 3D porous silicon gas diffusion layers. J Power Sour 216:15–21. doi: 10.1016/j.jpowsour.2012.05.046 CrossRefGoogle Scholar
  18. Li X, Faghri A, Xu C (2010) Structural optimization of the direct methanol fuel cell passively fed with a high-concentration methanol solution. J Power Sour 195(24):8202–8208. doi: 10.1016/j.jpowsour.2010.06.041 CrossRefGoogle Scholar
  19. Lim SW, Kim SW, Kim HJ, Ahn JE, Han HS, Shul YG (2006) Effect of operation parameters on performance of micro direct methanol fuel cell fabricated on printed circuit board. J Power Sour 161(1):27–33. doi: 10.1016/j.jpowsour.2006.03.091 CrossRefGoogle Scholar
  20. Liu H, Favier F, Ng K, Zach MP, Penner RM (2001) Size-selective electrodeposition of meso-scale metal particles: a general method. Electrochim Acta 47(5):671–677. doi: 10.1016/S0013-4686(01)00747-2 CrossRefGoogle Scholar
  21. Liu X, Suo C, Zhang Y, Wang W, Lu X, Tang D (2006) Application of MEMS technology to micro direct methanol fuel cell. In 1st IEEE International Conference on nano/micro engineered and molecular systems, Zhuhai pp 699–702. doi: 10.1109/NEMS.2006.334876
  22. Moghaddam S, Pengwang E, Jiang Y, Garcia AR, Burnett DJ, Brinker CJ, Masel RI, Shannon MA (2010) An inorganic–organic proton exchange membrane for fuel cells with a controlled nanoscale pore structure. Nat Nanotechnol 5(3):230–236. doi: 10.1038/NNANO.2010.13 CrossRefGoogle Scholar
  23. Pichonat T, Gauthier-Manuel B (2006) Mesoporous silicon-based miniature fuel cells for nomadic and chip-scale systems. Microsyst Technol 12(4):330–334. doi: 10.1007/s00542-005-0072-0 CrossRefGoogle Scholar
  24. Ramdutt D, Charles C, Hudspeth J, Ladewig B, Gengenbach T, Boswell R, Dicks A, Brault P (2007) Low energy plasma treatment of Nafion® membranes for PEM fuel cells. J Power Sour 165(1):41–48. doi: 10.1016/j.jpowsour.2006.11.078 CrossRefGoogle Scholar
  25. Saha MS, Kundu A (2010) Functionalizing carbon nanotubes for proton exchange membrane fuel cells electrode. J Power Sour 195(19):6255–6261. doi: 10.1016/j.jpowsour.2010.04.015 CrossRefGoogle Scholar
  26. Schmitz A, Tranitz M, Wagner S, Hahn R, Hebling C (2003) Planar self-breathing fuel cells. J Power Sour 118(1–2):162–171. doi: 10.1016/S0378-7753(03)00080-6 CrossRefGoogle Scholar
  27. Scotti G, Kanninen P, Kallio T, Franssila S (2012) Integration of carbon felt gas diffusion layers in silicon micro fuel cells. J Micromech Microeng 22(9):094006. doi: 10.1088/0960-1317/22/9/094006 CrossRefGoogle Scholar
  28. Shimizu T, Momma T, Mohamedi M, Osaka T, Sarangapani S (2004) Design and fabrication of pumpless small direct methanol fuel cells for portable applications. J Power Sour 137(2):277–283. doi: 10.1016/j.jpowsour.2004.06.008 CrossRefGoogle Scholar
  29. Sim WY, Kim GY, Yang SS (2001) Fabrication of micro power source (MPS) using a micro direct methanol fuel cell (μDMFC) for the medical application. In The 14th IEEE international conference on micro electro mechanical systems. pp 341–344. doi: 10.1109/MEMSYS.2001.906548
  30. Sundarrajan S, Allakhverdiev SI, Ramakrishn S (2012) Progress and perspectives in micro direct methanol fuel cell. Int J Hydrogen Energ 37(10):8765–8786. doi: 10.1016/j.ijhydene.2011.12.017 CrossRefGoogle Scholar
  31. Tang Y, Yuan W, Pan M, Tang B, Li Z, Wan Z (2010) Effects of structural aspects on the performance of a passive air-breathing direct methanol fuel cell. J Power Sour 195(17):5628–5636. doi: 10.1016/j.jpowsour.2010.03.069 CrossRefGoogle Scholar
  32. Tang Y-H, Huang M-J, Shiao M-H, Yang C-R (2011) Fabrication of silicon nanopillar arrays and application on direct methanol fuel cell. Microelectron Eng 88(8):2580–2583. doi: 10.1016/j.mee.2010.12.075 CrossRefGoogle Scholar
  33. Torres N, Santander J, Esquivel JP, Sabaté N, Figueras E, Ivanov P, Fonseca L, Gràcia I, Cané C (2008) Performance optimization of a passive silicon based micro direct methanol fuel cell. Sensor Actuat B-Chem 132(2):540–544. doi: 10.1016/j.snb.2007.11.035 CrossRefGoogle Scholar
  34. Torres N, Duch M, Santander J, Sabaté N, Esquivel JP, Tarancón A, Cané C (2009) Porous silicon membrane for micro fuel cell applications. J New Mat Elect Syst 12(2–3):93–96Google Scholar
  35. Tripković AV, Gojković SL, Popović KD, Lović JD (2006) Methanol oxidation at platinum electrodes in acid solution: comparison between model and real catalysts. J Serb Chem Soc 71(12):1333–1343. doi: 10.2298/JSC0612333T CrossRefGoogle Scholar
  36. Wang C, Waje M, Wang X, Tang JM, Haddon RC, Yan Y (2004) Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett 4(2):345–348. doi: 10.1021/nl034952p CrossRefGoogle Scholar
  37. Wei ZD, Chan SH, Li LL, Cai HF, Xia ZT, Sun CX (2005) Electrodepositing Pt on a Nafion-bonded carbon electrode as a catalyzed electrode for oxygen reduction reaction. Electrochim Acta 50(11):2279–2287. doi: 10.1016/j.electacta.2004.10.054 CrossRefGoogle Scholar
  38. Yeom J, Mozsgai GZ, Flachsbart BR, Choban ER, Asthana A, Shannon MA, Kenis PJA (2005) Microfabrication and characterization of a silicon-based millimeter scale, PEM fuel cell operating with hydrogen, methanol, or formic acid. Sensor Actuat B-Chem 107(2):882–891. doi: 10.1016/j.snb.2004.12.050 CrossRefGoogle Scholar
  39. Zhao X, Yin M, Ma L, Liang L, Liu C, Liao J, Lu T, Xing W (2011) Recent advances in catalysts for direct methanol fuel cells. Energy Environ Sci 4(8):2736–2753. doi: 10.1039/c1ee01307f CrossRefGoogle Scholar
  40. Zhou YA, Wang XH, Wu ZL, Wu XM, Liu LT (2011) Passive fuel delivery based on hydrophobic porous silicon for micro direct methanol fuel cells. In The 24th IEEE international conference on micro electro mechanical systems. pp 1321–1324. doi: 10.1109/MEMSYS.2011.5734677

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • N. Sabaté
    • 1
  • J. P. Esquivel
    • 1
  • J. Santander
    • 1
    Email author
  • J. G. Hauer
    • 1
  • R. W. Verjulio
    • 1
  • I. Gràcia
    • 1
  • M. Salleras
    • 1
  • C. Calaza
    • 1
  • E. Figueras
    • 1
  • C. Cané
    • 1
  • L. Fonseca
    • 1
  1. 1.Instituto de Microelectrónica de BarcelonaIMB-CNM (CSIC)Bellaterra, BarcelonaSpain

Personalised recommendations