Skip to main content
Log in

Optimizing hollow microneedles arrays aimed at transdermal drug delivery

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Microneedles as a means of transdermal drug delivery is a very promising technology that has been under development in recent years. Much research has been undertaken on the subject, but the quantity of available information makes determining crucial factors for their optimization difficult. This review article gathers available information concerning the mechanics and fluidics of microneedles and provides the reader with important summarized information to take into consideration when designing microneedles systems intended for transdermal drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agache P, Monneur C, Leveque J, Rigal JD (1980) Mechanical properties and young’s modulus of human skin in vivo. Arch Dermatol Res 269:221–232

    Article  Google Scholar 

  • Alqallaf B, Das D, Mori D, Cui Z (2007) Modelling transdermal delivery of high molecular weight drugs from microneedle systems. Phil Trans Roy Soc Lond A 365:2951–2967

    Article  Google Scholar 

  • Bal S, Caussin J, Pavel S, Bouwstra J (2008) In vivo assessment of safety of micro needle arrays in human skin. Eur J Pharm Sci 35:193–202

    Article  Google Scholar 

  • Bariya S, Gohel M, Mehta T, Sharma O (2011) Microneedles: an emerging transdermal drug delivery system. J Pharm Pharmacol 64(1):11–29

    Google Scholar 

  • Bodhale D, Nisar A, Afzulpurkar N (2010a) Design, fabrication and analysis of silicon microneedles for transdermal drug delivery applications. In: Proceedings of the 3rd international conference on the development of BME, Vietnam

  • Bodhale D, Nisar A, Afzulpurkar N (2010b) Structural and microfluidic analysis of hollow side-open polymeric microneedles for transdermal drug delivery applications. Microfluid Nanofluid 8:373–392

    Article  Google Scholar 

  • Colin S (2004) Microfluidique. Hermes Science Publications

  • Davis S, Landis B, Adams Z, Allen M, Prausnitz M (2004) Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. J Biomech 37:1157–1163

    Article  Google Scholar 

  • Donnelly R, Maijithia R, Singh T, Morrow D, Garland M, Demir Y, Migalska K, Ryan E, Gillen D, Scott C, Woolfson A (2011) Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res 28:41–57

    Article  Google Scholar 

  • Duck F (1990) Physical properties of tissues: a comprehensive reference book. Academic Press, New York

  • Elkhyat A, Courderot-Masuyer C, Humbert P (2004) Influence of hydrophobic and hydrophylic characteristics of sliding and slider surfaces on friction coefficient: in vivo human skin comparison. Skin Res Tech 10:215–221

    Article  Google Scholar 

  • Frick T (2003) Resistance forces acting on suture needles. J Biomech 34:1335–1340

    Article  Google Scholar 

  • Gardeniers HJ, Luttge R, Berenschot EJ, Boer M, Yeshurun S, Hefetz M, van’t Oever R, van den Berg A (2003) Silicon micromachined hollow microneedles or transdermal liquid transport. J Microelectromech Syst 12(6):855–862

    Article  Google Scholar 

  • Gardner T, Briggs G (2001) Biomedical measurements in microscopically thin stratum corneum using acoustics. Skin Res Tech 7:254–261

    Article  Google Scholar 

  • Giboz J, Copponnex T, Mele P (2007) Microinjection molding of thermoplastic polymers: a review. J Micromech Microeng 17:R96–R109

    Article  Google Scholar 

  • Gill H, Prausnitz M (2007) Does needle size matter. J Diabetes Sci Technol 1(5):725–729

    Google Scholar 

  • Gill H, Denson D, Burris B, Prausnitz M (2008) Effect of micro needle design on pain in human subjects. Clin J Pain 24(7):585–594

    Article  Google Scholar 

  • Griss P, Stemme G (2003) Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer. J Microelectromech Syst 12(3):296–301

    Article  Google Scholar 

  • Gupta J, Park S, Bondy B, Felner E, Prausnitz M (2011) Infusion pressure and pain during microneedles injection into skin of human. Biomaterials 32(28):6823–6831

    Article  Google Scholar 

  • Hamilton J (1995) Needle phobia: a neglected diagnosis. J Fam Pract 41:169–175

    MathSciNet  Google Scholar 

  • Heckele M, Schomburg W (2004) Review on micro molding of thermoplastic polymers. J Micromech Microeng 14:R1–R14

    Article  Google Scholar 

  • Hendricks F, Brokken D, Oomens C, Bader D, Baaijens F (2006) The relative contributions of different skin layers to the mechanical behaviour of human skin in vivo using suction experiments. Med Eng Phys 28:259–266

    Article  Google Scholar 

  • Henry S, McAllister D, Allen M, Prausnitz M (1998) Microfabricated miconeedles: a new approach to transdermal drug delivery. J Pharm Sci 87(8):922–925

    Article  Google Scholar 

  • Holbrook K, Odland G (1974) Regional differences in the thickness (cell layer) of the human stratum corneum: an ultrastructural analysis. J Invest Dermatol 62:415–422

    Article  Google Scholar 

  • Hood R, Kosoglu M, Parker M, Rylander C (2011) Effects of micro needle design parameters on hydraulic resistance. J Med Devices 5:1–5

    Google Scholar 

  • Ji J, Tay F, Miao J (2006) Microfabricated hollow microneedle array using icp etcher. J Phy Conference Series 34:1132–1136

    Article  Google Scholar 

  • Kaushik S, Hord A, Denson D, McAllister D, Smitra S, Allen M, Prausnitz M (2001) Lack of pain associated with micro fabricated micro needles. Anest Analg 92:502–504

    Article  Google Scholar 

  • Khumpuang S, Maeda R, Sugiyama S (2003) Design and fabrication of a coupled microneedle array and insertion guide array for safe penetration through skin. In: Proceedings of 2003 international symposium on micromechatronics and human science

  • Kim K, Lee JB (2007) High aspect ratio tapered hollow metallic microneedles arrays with microfluidic interconnector. Microsyst Technol 13:231–235

    Article  Google Scholar 

  • Kong X, Wu C (2009) Measurement and prediction of insertion force for the mosquito facsicle penetrating into human skin. J Bionic Eng 6:143–152

    Article  Google Scholar 

  • Kong X, Zhou P, Wu C (2011) Numerical simulations of microneedles insertion into skin. Comput Meth Biomech Biomed Eng 14(9):827–835

    Article  Google Scholar 

  • Lhernould MS, Delchambre A (2011) Innovative design of hollow polymeric microneedles for transdermal drug delivery. Microsyst Technol 17(10–11):1675–1682

    Article  Google Scholar 

  • Lv Y, Liu J, Gao Y, Xu B (2006) Modeling of transdermal drug delivery with a microneedle array. J Micromech Microeng 16:2492–2501

    Article  Google Scholar 

  • Ma G, Shi L, Wu C (2011) Biomechanical property of a natural micro needle: the caterpillar spine. J Med Devices 5:1–6

    Article  Google Scholar 

  • Martanto W (2005) Microinjection into skin using microneedles. PhD thesis, Georgia Institute of Technology

  • Martanto W, Moore J, Couse T, Prausnitz M (2006a) Mechanism of fluid infusion during microneedle insertion and retraction. J Control Release 112:357–361

    Article  Google Scholar 

  • Martanto W, Moore J, Kashlan O, R Kamath a dPW, O’Neal J, Prausnitz M (2006b) Microinfusion using hollow microneedles. Pharm Res 23(1):104–113

    Article  Google Scholar 

  • Matteucci M, Fanetti M, ans F Gramatica MC, Gavioli L, Tormen M, Grenci G, Angelis FD, Fabrizio ED (2009) Poly vinyl alcohol re-usable masters for microneedle replication. Microe Eng 86:752–756

    Article  Google Scholar 

  • McAllister D, Wang P, Davis S, Park JH, Canatella P, Allen M, Prausnitz M (2003) Microfabricated needles for transdermal delivery of macromolecule and nanoparticles: fabrication methods and transport studies. In: National Academy of Sciences of the United States of America, vol 100, pp 13,755–13,760

  • Mehta A, Wong F (1973) Measurement of flammability and burn potential of fabrics. Tech. rep., MIT, Massachussets

  • Miller M (1999) The cost of unsafe injections. Bull World Health Organ 77(10):808–811

    Google Scholar 

  • Moon S, Lee S (2005) A novel fabrication method of a microneedle array using inclined deep X-ray exposure. J Micromech Microeng 15:903–911

    Article  Google Scholar 

  • Mukerjee E, Collins S, Isseroff R, Smith R (2004) Microneedle array for transdermal biological fluid extraction and in situ analysis. Sens Actuators, A 114:267–275

    Article  Google Scholar 

  • Norlen L (1999) The skin barrier:structure and physical function. PhD thesis, Karolinska Institute, Sweden

  • Olatunji O, Das D, Nassehi V (2011) Modelling transdermal drug delivery using micro needles: effect of geometry on drug transport behaviour. J Pharm Sci 101(1):164–175

    Article  Google Scholar 

  • Park JH, Prausnitz M (2010) Analysis of the mechanical failure of polymer microneedles by axial force. J Korean Phys Soc 56(4):1223–1227

    Article  Google Scholar 

  • Park JH, Allen M, Prausnitz M (2006) Polymer microneedles for controlled-release drug delivery. Pharm Res 23(5):1008–1018

    Article  Google Scholar 

  • Poiseuille J (1840) Recherches experimentales sur le mouvement des liquides dans les tubes de tres petits diametres. Comptes Rendus Hebdomadaires des l’Academie des Sciences 11:961–967; 1041–1048

    Google Scholar 

  • Prausnitz M, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26(11):1261–1268

    Article  Google Scholar 

  • Ramasubraminian M, Barham O, Swaminathan V (2008) Mechanics of a mosquito bite with applications to microneedle design. Bioinspir Biomim 3:1–10

    Article  Google Scholar 

  • Roxhed N, Gasser T, Griss P, Holzapfel G, Stemme G (2007) Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery. J Microelectromech Syst 16(6):1429–1440

    Article  Google Scholar 

  • Roxhed N, Griss P, Stemme G (2008a) Membrane-sealed hollow microneedles and related administration schemes for transdermal drug delivery. Biomed Microdevices 10:271–279

    Article  Google Scholar 

  • Roxhed N, Samel B, Nordquist L, Griss P, Stemme G (2008b) Painless drug delivery through microneedle-based transdermal patches featuring active infusion. IEEE Trans Biomed Eng 55(3):1063–1071

    Article  Google Scholar 

  • Sammoura F, Kang J, Heo YM, Jung T, Lin L (2007) Polymer microneedle fabrication using a microinjection molding technique. Microsyst Technol 13:517–522

    Article  Google Scholar 

  • Sharp K, Adrian R, Santiago J, Molho J (2002) Liquids flow in microchannels, CRC Press, Boca Raton, pp 1–38

  • Shergold O, Fleck N (2005) Experimental investigation into the deep penetration of soft solids by sharp and blunt punches, with application to the piercing of skin. J Biomec Eng 17:513–520

    Google Scholar 

  • Shergold O, Fleck N, King T (2006) The penetration of a soft solid by a liquid jet, with application to the administration of a needle-free injection. J Biomech 39:2593–2602

    Article  Google Scholar 

  • Shikida M, Hasada T, Sato K (2006) Fabrication of densely arrayed micro-needles with flow channels by mechanical dicing and anisotropic wet etching. J Micromech Microeng 16(8):1740–1747. doi:10.1088/0960-1317/16/8/039. http://iopscience.iop.org/0960-1317/16/8/039

    Google Scholar 

  • Staples M, Daniel K, Cima M, Langer R (2006) Applications of micro- and nano-electromechanical devices to drug delivery. Pharm Res 23(5):847–863

    Article  Google Scholar 

  • Stoeber B, Liepmann D (2005) Arrays of hollow out-of-plane microneedles for drug delivery. J Microelectromech Syst 14(3):472–479

    Article  Google Scholar 

  • Swartz M, Fleury M (2007) Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng 9:229–256

    Article  Google Scholar 

  • Teo A, Shearwood C, Ng K, Lu J, Moochhala S (2006) Transdermal microneedles for drug delivery applications. Mater Sci Eng, B 132:151–154

    Article  Google Scholar 

  • Wang PM, Cornwell M, Hill J, Prausnitz M (2006) Precise microinjection into skin using hollow microneedles. J Invest Dermatol 126:1080–1087

    Article  Google Scholar 

  • Yung K, Xu Y, Liu H, Tam K, Ko S, Kwan F, Lee T (2012) Sharp tipped plastic hollow micro needle array by microinjection moulding. J Micromech Microeng 22:1–10

    Article  Google Scholar 

  • Zahn J, Talbot N, Liepmann D, Pisano A (2000) Microfabricated polysilicon microneedles for minimally invasive biomedical devices. Biomed Microdevices 2(4):295–303

    Article  Google Scholar 

Download references

Acknowledgements

This work has been possible thanks to the support of the Walloon Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sausse Lhernould.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lhernould, M.S. Optimizing hollow microneedles arrays aimed at transdermal drug delivery. Microsyst Technol 19, 1–8 (2013). https://doi.org/10.1007/s00542-012-1663-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1663-1

Keywords

Navigation