Skip to main content

Advertisement

Log in

High aspect ratio metal micro and nano pillars for minimal footprint MEMS suspension

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Vertical nano and micro pillars perpendicularly rising from a substrate offer two lateral translatory–rotatory degrees of freedom. Electroforming allows their production as small footprint integrated suspension elements of micro to nano scale. This paper demonstrates the design of a novel inertial sensor concept with acceleration sensor and gyroscope function using only one inertial mass. Experimental results using UV Direct LIGA with AZ 125 nXT show the feasibility of a technology demonstrator with a copper micro pillar of 400 μm length and 40 μm diameter. Further work using x-ray Direct LIGA is scheduled for the production of the pillar with a length of 100 μm and a diameter of 3–6 μm. Fabrication concepts and pilot tests show promising possibilities for miniaturization towards nano scale pillars for minimal footprint suspension in MEMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bernstein J, Cho S, King A, Kourepenis A, Maciel P, Weinberg M (1993) A micromachined comb-drive tuning fork rate gyroscope. In: Proceedings of the IEEE micro electro mechanical systems, Fort Lauderdale, FL, USA, pp 143–148. doi:10.1109/MEMSYS.1993.296932

  • Brophy CP, Fu XR, Lambert DW, Merchant PP (2001) MEMS mirror and method of fabrication. US Patent App. 09/919,325

  • Cornelius T, Ensinger W, Neumann R, Rauber M (2009) Nanowire structural element. US Patent App. 12/933,184

  • Dixit P, Tan CW, Xu L, Lin N, Miao J, Pang JH, Backus P, Preisser R (2007) Fabrication and characterization of fine pitch on-chip copper interconnects for advanced wafer level packaging by a high aspect ratio through AZ9260 resist electroplating. J Micromech Microeng 17(5):1078G1086

    Article  Google Scholar 

  • Ekinci KL (2004) Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J Appl Phys 95(5):2682. doi:10.1063/1.1642738

    Article  Google Scholar 

  • Engelke R, Mathuni J, Ahrens G, Gruetzner G, Bednarzik M, Schondelmaier D, Loechel B (2008) Investigations of SU-8 removal from metallic high aspect ratio microstructures with a novel plasma technique. Microsyst Technol 14(9):1607G1612

    Article  Google Scholar 

  • Greiner PF, Schlaak HF (2011) High aspect ratio metal nano and micro pillars as suspension elements in MEMS. In: Proceedings of the 9th International Workshop on high aspect ratio micro structure technology, HsinChu, Taiwan

  • Greiner PF, Eberhardt J, Schlaak HF (2010) Metallic micro nails MAde by direct LiG process G MiNiMAL. In: Proceedings of the KNMF User Meeting, Karlsruhe

  • Greiner F, Eberhardt J, Schlaak HF (2011a) Vertical high aspect ratio nano and micro wires as novel suspension elements in MEMS. In: Proceedings of the Mikro System Technik Kongress 2001, VDE VERLAG GMBH, Berlin-Offenbach

  • Greiner F, Schlaak HF, Quednau S, Staab M (2011b) Mikrospiegelbauteil, Mikrospiegelvorrichtung mit wenigstens einem Mikrospiegelbauteil sowie Verfahren zur Herstellung eines Mikrospiegelbauteils. DE Patent App. 10 2011 104 843.3

  • Johnson D, Goettert J, Singh V, Yemane D (2011) SUEX-Dry laminate resist - opportunities for MEMS applications. In: Proceedings of the 9th International Workshop on high aspect ratio micro structure technology, HsinChu, Taiwan

  • Lindeberg M, Hjort K (2003) Interconnected nanowire clusters in polyimide for flexible circuits and magnetic sensing applications. Sens Actuators A Phys 105(2):150–161. doi:10.1016/S0924-4247(03)00088-8

  • Lisinenkova M, Hahn L, Schulz B, Bade K (2007) Megasonic Supported Mass Transport in LIGA-Microstructures. No. 7378 in Wissenschaftliche Berichte FZKA, Karlsruhe

  • Liu G, Huang X, Xiong Y, Tian Y (2008) Fabricating HARMS by using megasonic assisted electroforming. Microsyst Technol 14(9):1223–1226. doi:10.1007/s00542-007-0556-1

    Article  Google Scholar 

  • Makarova OV, Mancini DC, Moldovan N, Divan R, Tang CM, Ryding DG, Lee RH (2003) Microfabrication of freestanding metal structures using graphite substrate. Sens Actuators A Phys 103(1-2):182G186

    Article  Google Scholar 

  • Quednau S, Greiner F, Schlaak HF, Rauber M, Neumann R, Ensinger W (2010) Integration von nanodrahtarrays in mikrosysteme fr die gasflusssensorik. In: 2. GMM-Workshop 3.-4. Mrz 2010 in Erfurt - GMM Fachbericht 63 "Mikro-Nano-Integration", ISBN 978-3-8007-3216-6, Berlin, Offenbach, pp 159–164

  • Rao CNR, Deepak FL, Gundiah G, Govindaraj A (2003) Inorganic nanowires. Prog Solid State Chem 31(1-2):5G147

    Article  Google Scholar 

  • Reznikova EF, Mohr J, Hein H (2005) Deep photo-lithography characterization of SU-8 resist layers. Microsyst Technol 11(4):282G91

    Article  Google Scholar 

  • Staab M, Greiner F, Schlosser M, Schlaak HF (2011) Applications of novel High-Aspect-Ratio ultrathick UV photoresist for microelectroplating. J Microelectromech Syst 20(4):794–796. doi:10.1109/JMEMS.2011.2159098

    Article  Google Scholar 

  • Timoshenko S, Goodier J (1951) Theory of elasticity, 3rd edn, Mc Graw-Hill, NY

  • Xu L, Dixit P, Pang JH, Miao J, Zhang X, Tu K, Preisser R (2007) Characterization of nano-grained high aspect ratio through-wafer copper interconnect column. In: Proceedings of the 57th Electronic Components and Technology Conference 2007, Sparks, NV, USA, pp 2011–2016. doi:10.1109/ECTC.2007.374078

  • Xu W, Wong J, Cheng C, Johnson R, Scherer A (1995) Fabrication of ultrasmall magnets by electroplating. J Vac Sci Technol Sect B Microelectron Nanometer Structur 13(6):2372–2375

    Article  Google Scholar 

  • Yang R, Jiang J, Meng WJJ, Wang W (2006) Numerical simulation and fabrication of microscale, multilevel, tapered mold inserts using UV-Lithographie, galvanoformung, abformung (LIGA) technology. Microsyst Technol 12(6):545–553. doi:10.1007/s00542-005-0073-z

    Article  Google Scholar 

  • Yazdi N, Ayazi F, Najafi K (1998) Micromachined inertial sensors. Proc IEEE 86(8):1640–1659

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the German Federal Ministry of Education and Research (BMBF) under the grants 16SV5053. The X-ray lithography part of this work will be carried out with the support of the Karlsruhe Nano Micro Facility (KNMF 2010-004-000365, www.knmf.kit.edu), a Helmholtz Research Infrastructure at Karlsruhe Institute of Technology (KIT, www.kit.edu). The support of Technische Universität Darmstadt EMK clean room staff Bernhard Jochem and Darina Riemer is acknowledged. Valuable technical discussions with Wolfgang Ensinger, and Markus Rauber of TUD Material Science, Christina Trautmann of GSI Helmholtz Centre for Heavy Ion Research, Robert Preisser and Xihai Kang of Atotech are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Greiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greiner, F., Schlaak, H.F. High aspect ratio metal micro and nano pillars for minimal footprint MEMS suspension. Microsyst Technol 19, 425–431 (2013). https://doi.org/10.1007/s00542-012-1659-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1659-x

Keywords

Navigation