Microsystem Technologies

, Volume 18, Issue 9–10, pp 1731–1739

Numerical simulation of thermal flying height control sliders in heat-assisted magnetic recording

Technical Paper


Heat assisted magnetic recording (HAMR) is one of the most promising techniques to extend the recording density in hard disk drives beyond 1 Tb/in2. Although the diameter of the spot on the disk that is heated by the laser beam is very small, on the order of nanometers, high local temperatures on the disk and the heat dissipated in the slider during the light delivery process can cause thermal deformations of both the disk and the slider, thereby affecting the flying characteristics at the head-disk interface. In this paper, a finite element model is developed which incorporates a HAMR optical system into a thermal flying height control (TFC) slider with dual heater/insulator elements to study the effect of heat dissipation in the wave guide on the thermal deformation and flying characteristics of a HAMR-TFC slider. In addition, the power input of the laser and design parameters of the heaters are investigated.


  1. Challener WA, Peng C, Itagi AV, Karns D, Peng W, Peng Y, Yang X, Zhu X, Gokemeijer NJ, Hsia Y-T, Ju G, Rottmayer RE, Seigler MA, Gage EC (2009) Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat Photonics 3:220–224CrossRefGoogle Scholar
  2. Dietzel A, Berger R, Machtle P, Despont M, Haberle W, Stutz R, Binnig GK, Vettiger P (2002) In situ slider-to-disk spacing on a nanometer scale controlled by microheater-induced slider deformations. Sens Actuator A Phys 100:123–130CrossRefGoogle Scholar
  3. Erden MF, Mathur PD, Challener WA, Gage EC, Peng W, McDaniel TW (2007) Compensating the effects of static head-media spacing variations and nonlinear transition shift in heat assisted magnetic recording. US Patent 2007(0230012):A1Google Scholar
  4. Fritzsche J, Li H, Zheng H, Amemiya K, Talke FE (2011) The effect of air bearing contour design on thermal pole-tip protrusion. Microsyst Technol 17:813–820CrossRefGoogle Scholar
  5. Gauvin M, Zheng H, Suen B, Lee J, Kang HJ, Talke FE (2011) Enhanced photo-thermal stability of modified PFPE lubricants under laser beam exposure. IEEE Trans Magn 47:1849–1854CrossRefGoogle Scholar
  6. Juang J, Bogy DB (2007) Air-bearing effects on actuated thermal pole-tip protrusion for hard disk drives. ASME J Tribol 129:570–578CrossRefGoogle Scholar
  7. Kryder MH, Gage EC, McDaniel TW, Challener WA, Rottmayer RE, Ju G, Hsia YT, Erden MF (2008) Heat assisted magnetic recording. P IEEE 96:1810–1835CrossRefGoogle Scholar
  8. Kurita M, Shiramatsu T, Miyake K, Kato A, Soga M, Tanaka H, Saegusa S, Suk M (2007) Active flying-height control slider using MEMS thermal actuator. Microsyst Technol 12:369–375CrossRefGoogle Scholar
  9. Li H, Liu B, Ye H, Chong TC (2005) Thermally induced stability issues of head-disk interface in heat-assisted magnetic recording systems. Jpn J Appl Phys 44:7950–7953CrossRefGoogle Scholar
  10. Liu J, Li J, Xu J, Yoshida S (2010) Optimization of micro-thermal actuator for flying height control. Microsys Technol 16:249–255CrossRefGoogle Scholar
  11. Matsumoto K, Inomata A, Hasegawa S (2005) Thermally assisted magnetic recording. http://www.fujitsu.com/downloads/MAG/vol42-1/paper18.pdf
  12. McDaniel TW, Challener WA, Sendur K (2003) Issues in heat-assisted perpendicular recording. IEEE Trans Magn 39:1972–1979CrossRefGoogle Scholar
  13. Peng W, Hsia Y-T, Sendur K, McDaniel T (2005) Thermo-magneto-mechanical analysis of head-disk interface in heat assisted magnetic recording. Tribol Int 38:588–593CrossRefGoogle Scholar
  14. Schultz BE (2007) Thermal fly-height control (TFC) technology in Hitachi hard disk drives. http://www.hitachigst.com/tech/techlib.nsf/techdocs/98EE13311A54CAC886257171005E0F16
  15. Stipe BC, Strand TC, Poon CC, Balamane H, Boone TD, Katine JA, Li JL, Rawat V, Nemoto H, Hirotsune A, Hellwig O, Ruiz R, Dobisz E, Kercher DS, Robertson N, Albrecht TR, Terris BD (2010) Magnetic recording at 1.5 Pb m-2 using an integrated plasmonic antenna. Nat Photonics 4:484–488CrossRefGoogle Scholar
  16. Suk M, Miyake K, Kurita M, Tanaka H, Saegusa S, Robertson N (2005) Verification of thermally induced nanometer actuation of magnetic recording transducer to overcome mechanical and magnetic spacing challenges. IEEE Trans Magn 44:4350–4352CrossRefGoogle Scholar
  17. Wu L, Talke FE (2011) Modeling laser induced lubricant depletion in heat-assisted-magnetic recording system using a multiple-layered disk structure. Microsyst Technol 17:1109–1114CrossRefGoogle Scholar
  18. Zheng H, Li H, Talke FE (2009) Numerical simulation of a thermal flying height control slider with dual heater and insulator elements. IEEE Trans Magn 45:3628–3631CrossRefGoogle Scholar
  19. Zheng H, Li H, Amemiya K, Talke FE (2011) The effect of write current on thermal flying height control sliders with dual heater/insulator elements. Microsys Technol 17:959–964CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Center for Magnetic Recording ResearchUniversity of California, San DiegoLa JollaUSA
  2. 2.Storage Mechanics LaboratoryHitachi Asia Ltd.SingaporeSingapore

Personalised recommendations