Skip to main content
Log in

Thin-film electro-acoustic sensors based on AlN and its alloys: possibilities and limitations

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Sputter deposited aluminum nitride (AlN) thin films have played a central role for the successful development of the thin film electro-acoustic technology. The development has been primarily driven by one device—the thin film bulk acoustic resonator, with its primary use for high frequency filter applications for the telecom industry. Recently, increased piezoelectric properties in AlN through the alloying with scandium nitride have been identified both experimentally and theoretically. This opens up new possibilities for the thin film electro-acoustic technology. Here expectations and discussions are presented on acoustic FBAR sensor performance when based on AlN as well as on such AlN alloys to identify possible benefits and limitations. Inhere, the distinction is made between direct and in-direct (acoustic) use of the piezoelectric effect for sensor applications. These two approaches are described and compared in view of their advantages and possibilities. Especially, the indirect (or acoustic) use is identified as interesting for its versatility and good exploitation of the thin film technology to obtain highly sensitive sensor transducers. It is pointed out that the indirect approach can well be obtained internally in the piezoelectric material structure. Original calculations are presented to support the discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aigner R (2003) MEMS in RF filter applications: thin-film bulk acoustic wave technology. Sensors Updat 12(1):175–210

    Article  Google Scholar 

  • Aigner R (2008) SAW and BAW technologies for RF filter applications: a review of the relative strengths and weaknesses. In: IEEE Ultrasonics Symposium, pp 582–589

  • Akiyama M, Morofuji Y, Kamohara T, Nishikubo K, Tsubai M, Fukuda O, Ueno N (2006) Flexible piezoelectric pressure sensors using oriented aluminum nitride thin films prepared on polyethylene terephthalate films. J Appl Phys 100(11):114315–114318

    Article  Google Scholar 

  • Akiyama M, Kamohara T, Kano K, Teshigahara A, Takeuchi Y, Kawahara N (2009a) Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering. Adv Mater 21(5):593. doi:10.1002/adma.200802611

    Article  Google Scholar 

  • Akiyama M, Kano K, Teshigahara A (2009b) Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl Phys Lett 95(16):162103–162107

    Article  Google Scholar 

  • Alsaad A, Ahmad A, Alta’ani H, Alshyab R (2008) A first-principles-derived method for computing the piezoelectric coefficients of complex semiconductor Sc1-xGaxN alloys. Phys B 403(23–24):4174–4181. doi:10.1016/j.physb.2008.09.012

    Article  Google Scholar 

  • Ballantine DS, White RM, Martin SJ, Ricco AJ, Zellers ET, Frye GC, Wohltjen H (1997) Acoustic wave sensors; theory, design, and physico–chemical applications. Applications of modern acoustics. Academic Press, New York

    Google Scholar 

  • Bjurstrom J, Wingqvist G, Katardjiev I (2006) Synthesis of textured thin piezoelectric AlN films with a nonzero C-axis mean tilt for the fabrication of shear mode resonators. IEEE Trans Ultrason Ferroelectr Freq Control 53(11):2095–2100

    Article  Google Scholar 

  • Bjurstrom J, Wingqvist G, Yantchev V, Katardjiev I (2007) Temperature compensation of liquid FBAR sensors. J Micromech Microeng 17(3):651–658

    Article  Google Scholar 

  • Bohnen T, Yazdi GR, Yakimova R, van Dreumel GWG, Hageman PR, Vlieg E, Algra RE, Verheijen MA, Edgar JH (2009) ScAlN nanowires: a cathodoluminescence study. J Cryst Growth 311(11):3147–3151. doi:10.1016/j.jcrysgro.2009.03.023

    Article  Google Scholar 

  • Brederlow R, Zauner S, Scholtz AL, Aufinger K, Simburger W, Paulus C, Martin A, Fritz M, Timme HJ, Heiss H, Marksteiner S, Elbrecht L, Aigner R, Thewes R (2003) Biochemical sensors based on bulk acoustic wave resonators. In: Electron devices meeting pp 32.7.1–32.7.3

  • Caliendo C, Imperatori P (2003) High-frequency, high-sensitivity acoustic sensor implemented on AlN/Si substrate. Appl Phys Lett 83(8):1641–1643. doi:10.1063/1.1604482

    Article  Google Scholar 

  • Choujaa A, Tirole N, Bonjour C, Martin G, Hauden D, Blind P, Cachard A, Pommier C (1995) Aln/silicon lamb-wave microsensors for pressure and gravimetric measurements. Sens Actuators A Phys 46(1–3):179–182

    Article  Google Scholar 

  • Damjanovic D (2010) A morphotropic phase boundary system based on polarization rotation and polarization extension. Appl Phys Lett 97(6):062906. doi:06290610.1063/1.3479479

    Article  Google Scholar 

  • Duhamel R, Robert L, Jia HG, Li F, Lardet-Vieudrin F, Manceau JF, Bastien F (2006) Sensitivity of a lamb wave sensor with 2 mu m AlN membrane. Ultrasonics 44:E893–E897. doi:10.1016/j.ultras.2006.05.206

    Article  Google Scholar 

  • Enlund J, Yantchev V, Katardjiev I (2006) Electric Field Sensitivity of Thin Film Resonators Based on Piezoelectric AlN Thin Films. In: IEEE ultrasonics symposium, 2006, pp 468–471

  • Farrer N, Bellaiche L (2002) Properties of hexagonal ScN versus wurtzite GaN and InN. Phys Rev B 66(20):4–7. doi:20120310.1103/PhysRevB.66.201203

    Article  Google Scholar 

  • Fattinger GG, Fattinger MR, Diefenbeck K, Muller P, Aigner R (2005) Spurious mode suppression in coupled resonator filters. In: IEEE microwave symposium digest MTT-S international

  • Gabl R, Feucht HD, Zeininger H, Eckstein G, Schreiter M, Primig R, Pitzer D, Wersing W (2004) First results on label-free detection of DNA and protein molecules using a novel integrated sensor technology based on gravimetric detection principles. Biosens Bioelectron 19(6):615–620

    Article  Google Scholar 

  • Hoglund C, Birch J, Alling B, Bareno J, Czigany Z, Persson POA, Wingqvist G, Zukauskaite A, Hultman L (2010) Wurtzite structure Sc1-xAlxN solid solution films grown by reactive magnetron sputter epitaxy: Structural characterization and first-principles calculations. J Appl Phys 107(12):123515. doi:12351510.1063/1.3448235

    Article  Google Scholar 

  • Kanazawa KK, Gordon JG (1985) Frequency of a quartz microbalance in contact with liquid. Anal Chem 57(8):1770–1771

    Article  Google Scholar 

  • Kishi K, Ooishi Y, Noma H, Ushijima E, Ueno N, Akiyama M, Tabaru T (2006) Measurement of output voltage of aluminum nitride thin film as a pressure sensor at high temperature. J Eur Ceram Soc 26(15):3425–3430

    Article  Google Scholar 

  • Lakin KM, Wang JS, Kline GR, Landin AR, Chen YY, Hunt JD (1982) Thin film resonators and filters. Ultrason Symp Proc 1:466–475

    Google Scholar 

  • Liu Y, Kauser MZ, Schroepfer DD, Ruden PP, Xie J, Moon YT, Onojima N, Morkoc H, Son KA, Nathan MI (2006) Effect of hydrostatic pressure on the current-voltage characteristics of GaN/AlGaN/GaN heterostructure devices. J Appl Phys 99(11):113706. doi:11370610.1063/1.2200742

    Article  Google Scholar 

  • Muralt P, Antifakos J, Cantoni M, Lanz R, Martin F (2005) Is there a better material for thin film BAW applications than A1N? Ultrason Symp Proc 1:320

    Google Scholar 

  • Nirschl M, Rantala A, Tukkiniemi K, Auer S, Hellgren AC, Pitzer D, Schreiter M, Vikholm-Lundin I (2010) CMOS-integrated film bulk acoustic resonators for label-free biosensing. Sensors 10(5):4180–4193. doi:10.3390/s100504180

    Article  Google Scholar 

  • Nirschl M, Schreiter M, Vörös J (2011) Comparison of FBAR and QCM-D sensitivity dependence on adlayer thickness and viscosity. Sens Actuators A 165(2):415–421

    Article  Google Scholar 

  • Nowotny H, Benes E (1987) General one-dimensional treatment of the layered piezoelectric resonator with two electrodes. J Acoust Soc Am 82(2):513–521

    Article  Google Scholar 

  • Ooishi Y, Kishi K, Akiyama M, Noma H, Tabaru T (2005) Analysis of the basic characteristic by electrical model of aluminum nitride thin film pressure sensor. J Ceram Soc Jpn 113(1324):816–818

    Article  Google Scholar 

  • Ruby RC, Bradley P, Oshmyansky Y, Chien A, Larson JD (2001) Thin film bulk wave acoustic resonators (FBAR) for wireless applications. IEEE Ultrason Symp Proc 1:813–821

    Google Scholar 

  • Tasnádi F, Alling B, Höglund C, Wingqvist G, Birch J, Hultman L, Abrikosov IA (2010) Origin of the anomalous piezoelectric Response in wurtzite ScxAl1-xN alloys. Phys Rev Lett 104(13):137601

    Article  Google Scholar 

  • Weber J, Link M, Primig R, Pitzer D, Schreiter M (2005) Sensor for ambient pressure and material strains using a thin film bulk acoustic resonator. Ultrason Symp IEEE 2:1258–1261

    Article  Google Scholar 

  • Wingqvist G (2010) AlN-based sputter-deposited shear mode thin film bulk acoustic resonator (FBAR) for biosensor applications—a review. Surf Coat Technol 205(5):1279–1286. doi:10.1016/j.surfcoat.2010.08.109

    Article  Google Scholar 

  • Wingqvist G, Bjurstrom J, Liljeholm L, Yantchev V, Katardjiev I (2007) Shear mode AlN thin film electro-acoustic resonant sensor operation in viscous media. Sens Actuators B Chem 123(1):466–473

    Article  Google Scholar 

  • Wingqvist G, Yantchev V, Katardjiev I (2008) Mass sensitivity of multilayer thin film resonant BAW sensors. Sens Actuators A 148(1):88–95

    Article  Google Scholar 

  • Wingqvist G, Tasnadi F, Zukauskaite A, Birch J, Arwin H, Hultman L (2010) Increased electromechanical coupling in w-ScxAl1-xN. Appl Phys Lett 97(11):112902. doi:10.1063/1.3489939

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges the financial support given by the Swedish Foundation for Strategic Research (SSF) Center on Materials Science for nanoscale Surface Engineering (MS2E), the Swedish Research Council (VR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunilla Wingqvist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wingqvist, G. Thin-film electro-acoustic sensors based on AlN and its alloys: possibilities and limitations. Microsyst Technol 18, 1213–1223 (2012). https://doi.org/10.1007/s00542-012-1527-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1527-8

Keywords

Navigation