Skip to main content
Log in

Measurement of electrical properties of materials under the oxide layer by microwave-AFM probe

Microsystem Technologies Aims and scope Submit manuscript

Cite this article


The capability of a new AFM-based apparatus named microwave atomic force microscope (M-AFM) which can measure the topography and electrical information of samples simultaneously was investigated. Some special samples with different thicknesses of dielectric film (SiO2) which plays the role of oxide layer creating on the material surface were fabricated. The measurement of electrical properties of materials under the oxide layer by the M-AFM was studied. The results indicate that the M-AFM can lead the microwave signal penetrate the oxide film (SiO2) with a limited thickness of 60 nm and obtain the electrical information of underlying materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  • Duewer F, Gao C, Takeuchi I, Xiang XD (1999) Tip-sample distance feedback control in a scanning evanescent microwave microscope. Appl Phys Lett 74(18):2696–2698. doi:10.1063/1.123940

    Article  Google Scholar 

  • Ju Y, Saka M, Abe H (2001) NDI of delamination in IC packages using millimeter-waves. IEEE Trans Instrum Meas 50(4):1019–1023. doi:10.1109/19.948319

    Article  Google Scholar 

  • Ju Y, Sato H, Soyama H (2005) Fabrication of the tip of GaAs microwave probe by wet etching. In: Proceedings of the advances in electronic packaging part A, B, and C. Micro- and nanofabrication process (Paper No. interPACK 2005 (CD-ROM) 73140). ASME, San Francisco, 17–22 July 2005

  • Ju Y, Kobayashi T, Soyama H (2007) Fabrication of a GaAs microwave probe used for atomic forcemicroscope. Proceedings of the MEMS processing and fabrication (paper no. interPACK 2007 (CD-ROM) 33613). ASME, Vancouver, 8–12 July 2007

  • Ju Y, Kobayashi T, Soyama H (2008) Development of a nanostructural microwave probe based on GaAs. Microsyst Technol 14(7):1021–1025. doi:10.1007/s00542-007-0484-0

    Article  Google Scholar 

  • Kopanski JJ, Marchiando JF, Lowney JR (1996) Scanning capacitance microscopy measurements and modeling: progress towards dopant profiling of silicon. J Vac Sci Technol B 14(1):242–247. doi:10.1116/1.588455

    Article  Google Scholar 

  • Liu L, Ju Y (2010) Nondestructive measurement and high-precision evaluation of the electrical conductivity of doped GaAs wafers using microwaves. Rev Sci Instrum 81(12):124701. doi:10.1063/1.3518038

    Article  Google Scholar 

  • Martin Y, Wickramasinghe HK (1987) Magnetic imaging by force microscopy with 1000—a resolution. Appl Phys Lett 50(20):1455–1457. doi:10.1063/1.97800

    Article  Google Scholar 

  • Martin Y, Abraham DW, Wickramasinghe HK (1988) High-resolution capacitance measurement and potentiometry by force microscopy. Appl Phys Lett 52(13):1103–1105. doi:10.1063/1.99224

    Article  Google Scholar 

  • Nonnenmacher M, Oboyle MP, Wickramasinghe HK (1991) Kelvin probe force microscopy. Appl Phys Lett 58(25):2921–2923. doi:10.1063/1.105227

    Article  Google Scholar 

  • Petzold M, Landgraf J, Futing M, Olaf JM (1995) Application of atomic-force microscopy for micro indentation testing. Thin Solid Films 264(2):153–158. doi:10.1016/0040-6090(95)05855-9

    Article  Google Scholar 

  • Qiang LL, Ma Z, Zheng Z, Yin R, Huang W (2006) Novel photo-crosslinkable light-emitting rod/coil copolymers: underlying facile material for fabricating pixelated displays. Macromol Rapid Commun 27(20):1779–1786. doi:10.1002/marc.200600471

    Article  Google Scholar 

  • Tabib-Azar M, Akinwande D (2000) Real-time imaging of semiconductor space-charge regions using high-spatial resolution evanescent microwave microscope. Rev Sci Instrum 71(3):1460–1465. doi:10.1063/1.1150480

    Article  Google Scholar 

  • Yamanaka K, Nakano S (1996) Ultrasonic atomic force microscope with overtone excitation of cantilever. Jpn J Appl Phys 35(6B):3787–3792. doi:10.1143/JJAP.35.3787

    Article  Google Scholar 

  • Zhang L, Ju Y, Hosoi A, Fujimoto A (2010) Microwave atomic force microscopy imaging for nanometer-scale electrical property characterization. Rev Sci Instrum 81(12):123708. doi:10.1063/1.3525058

    Article  Google Scholar 

  • Zhang L, Ju Y, Hosoi A, Fujimoto A (2012) Microwave atomic force microscopy: quantitative measurement and characterization of electrical properties on the nanometer scale. Appl Phys Express 5(1):016602. doi:10.1143/APEX.5.016602

    Article  Google Scholar 

Download references


This work was supported by the Japan Society for the Promotion of Science under Grants-in-Aid for Scientific Research (A) 23246024.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yang Ju.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, L., Ju, Y., Hosoi, A. et al. Measurement of electrical properties of materials under the oxide layer by microwave-AFM probe. Microsyst Technol 18, 1917–1922 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: