Microsystem Technologies

, Volume 18, Issue 9–10, pp 1255–1259 | Cite as

Probing and diagnosis of slider–disk interactions in nanometer clearance regime using artificial neural network

  • Gang Sheng
  • Loulin Huang
  • Jianfeng Xu
  • Jen-Yuan Chang
Technical Paper


This paper addresses the issue of system identification for an active-head slider used to form a stable and reliable head–disk interface with a spacing of sub 3 nm. A new identification method is proposed to fit the highly non-stationary and highly nonlinear slider dynamics. The estimated model can be used for design of a model based nonlinear controller to control the flying height within the desired range. The effectiveness of the proposed system identification method is verified with simulation examples.


Artificial Neural Network Artificial Neural Network Model Power Spectrum Density Interfacial Force Disk Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Chen D, Bogy BD (2010) Numerical investigation of bouncing vibrations of an air bearing slider in near or partial contact. J Tribol 132:011901–011911CrossRefGoogle Scholar
  2. Gupta V, Bogy DB (2005) Dynamics of sub-5-nm air-bearing sliders in the presence of electrostatic and intermolecular forces at the head–disk interface. IEEE Trans Magn 41(2):610–614CrossRefGoogle Scholar
  3. Gurney K (1999) An introduction to neural networks. UCL press, LondonGoogle Scholar
  4. Hua W, Liu B, Yu SK, Zhou WD (2009) Nanoscale roughness contact in a slider–disk interface. Nanotechnology 20:285710CrossRefGoogle Scholar
  5. Moller MF (1993) A scaled conjugate algorithm for fast supervised learning. Neural Networks 6:523–533CrossRefGoogle Scholar
  6. Shimizu Y, Ono K, Umehara N, Xu JG (2009) Experimental and numerical simulation study on low-surface energy slider with thermal flying-height control function. IEEE Trans Mag 45:10CrossRefGoogle Scholar
  7. Vakis AI, Polycarpou AA (2010) Optimization of thermal fly-height control slider geometry for Tbit/in2 recording. Microsyst Technol 16:1021–1034CrossRefGoogle Scholar
  8. Xu JF, Sheng G (2011) Characterization of light contact in head disk interface with dynamic flying height control, ISPS 2010 conferenceGoogle Scholar
  9. Zheng J, Bogy DB (2010) Investigation of flying-height stability of thermal fly-height control sliders in lubricant or solid contact with roughness. Tribol Lett 38:283–289CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Gang Sheng
    • 1
  • Loulin Huang
    • 2
  • Jianfeng Xu
    • 3
  • Jen-Yuan Chang
    • 4
  1. 1.University of AlaskaFairbanksUSA
  2. 2.Auckland University of TechnologyAucklandNew Zealand
  3. 3.Western Digital CorporationSan JoseUSA
  4. 4.National Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations