Skip to main content
Log in

Integration of impedance spectroscopy sensors in a digital microfluidic platform

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Digital microfluidics combines the advantages of a low consumption of reagents with a high flexibility of processing fluid samples. For applications in life sciences not only the processing but also the characterization of fluids is crucial. In this contribution, a microfluidic platform, combining the actuation principle of electrowetting on dielectrics for droplet manipulations and the sensor principle of impedance spectroscopy for the characterization of the fluid composition and condition, is presented. The fabrication process of the microfluidic platform comprises physical vapor deposition and structuring of the metal electrodes onto a substrate, the deposition of a dielectric isolator and a hydrophobic top coating. The key advantage of this microfluidic chip is the common electric nature of the sensor and the actuation principle. This allows for fabricating digital microfluidic devices with a minimal number of process steps. Multiple measurements on fluids of different composition (including rigid particles) and of different conditions (temperature, sedimentation) were performed and process parameters were monitored online. These sample applications demonstrate the versatile applications of this combined technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Berthier J, Dubois P, Clementz P, Claustre P, Peponnet C, Fouillet Y (2007) Actuation potentials and capillary forces in electrowetting based microsystems. Sens Actuators A 134(2):471–479

    Article  Google Scholar 

  • Chatterjee D, Hetayothin B, Wheeler AR, King DJ, Garrel RL (2006) Droplet-based microfluidics with nonaqueous solvents and solutions. Lab Chip 6:199–206

    Article  Google Scholar 

  • Cho SK, Moon H, Kim C-J (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12(1):70–80

    Article  Google Scholar 

  • Clara S (2010) Anwendung und Analyse der Impedanzspektroskopie in electrowetting-lab-on-chip Systemen. Master thesis, Johannes Kepler University Linz

  • Evans R, Luan L, Jokerst N, Fair R (2007) Optical detection heterogeneously integrated with a coplanar digital microfluidic lab-on-a-chip platform. Proc IEEE Sens 2007:423–426

    Google Scholar 

  • Hammouche A, Karden E, Doncker RWD (2004) Monitoring state-of-charge of ni-mh and ni-cd batteries using impedance spectroscopy. J Power Sources 127(1–2):105–111

    Article  Google Scholar 

  • Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musianid M (2010) Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films. J Electrochem Soc 157(12):C452–C457

    Article  Google Scholar 

  • Lapierre F, Piret G, Drobrecq H, Melnyk O, Coffinier Y, Thomy V and Boukherroub R (2010) Ewod lab on chip for mass spectrometry and fluorescence analysis. In: Proceedings of the 14th international conference on microsystems for chemistry and life science, microTAS 2010, pp 647–649

  • Lederer T, Stehrer BP, Bauer S, Jakoby B, Hilber W (2011) Utilizing a high fundamental frequency quartz crystal resonator as a biosensor in a digital microfluidic platform. Sens Actuators A 172(1):161–168

    Article  Google Scholar 

  • Li Y, Parkes W, Haworth L, Stokes A, Muir K, Li P, Collin A, Hutcheon N, Henderson R, Rae B, Walton A (2008) Anodic Ta2O5 for cmos compatible low voltage electrowetting-on-dielectric device fabrication. Solid State Electron 52(9):1382–1387

    Article  Google Scholar 

  • Lippmann G (1875) Relations entre les phenomenes electriques et capillaries. Ann Chim Phys 5:494–548

    Google Scholar 

  • Lu H-W, Bottausci F, Fowler JD, Bertozzi AL, Meinhart C, Kim C-J (2008) A study of EWOD-driven droplets by PIV investigation. Lab Chip 8:456–461

    Article  Google Scholar 

  • Luan L, Evans R, Jokerst N, Fair R (2008) Integrated optical sensor in a digital microfluidic platform. IEEE Sens J 8(5):628–635

    Article  Google Scholar 

  • Macdonald JR (2005) Impedance spectroscopy theory, experiment, and applications. Wiley, New York

    Google Scholar 

  • Moon H, Wheeler AR, Garrell RL, Loo JA, Kim C-J (2006) An integrated digital micro fluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. Lab Chip 6:1213–1219

    Article  Google Scholar 

  • Nelson W, Kavehpour P and Kim C-J (2010) A Micro Extensional Filament Rheometer Enabled by EWOD. In: Proceedings of the IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), pp 75–78

  • Paik P, Pamula VK, Fair RB (2003) Rapid droplet mixers for digital microfluidic systems. Lab Chip 3:253–259

    Article  Google Scholar 

  • Randles JEB (1947) Kinetics of rapid electrode reactions. Discuss Farady Soc 1(1):11–19

    Article  Google Scholar 

  • Seo S-W, Cho S-Y, Jokerst N (2005) A thin-film laser, polymer waveguide, and thin-film photodetector cointegrated onto a silicon substrate. IEEE Photonics Technol Lett 17(10):2197–2199

    Article  Google Scholar 

  • Tlili C, Reybier K, Geloen A, Ponsonnet L, Martelet C, Ouada HB, Lagarde M, Jaffrezic-Renault N (2003) Fibroblast Cells: A Sensing Bioelement for Glucose Detection by Impedance Spectroscopy. Anal Chem 75(14):3340–3344

    Article  Google Scholar 

  • Vallet M, Berge B, Vovelle L (1996) Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films. Polymer 37(12):2465–2470

    Article  Google Scholar 

  • Wu J, Ben Y, Chang H-C (2005) Particle detection by electrical impedance spectroscopy with asymmetric-polarization AC electroosmotic trapping. Microfluid Nanofluid 1:161–167

    Article  Google Scholar 

Download references

Acknowledgments

This work was co-financed by the Austrian Science Fund FWF under contract no. L442-N14 and the Austrian Center of Competence in Mechatronics ACCM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Hilber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lederer, T., Clara, S., Jakoby, B. et al. Integration of impedance spectroscopy sensors in a digital microfluidic platform. Microsyst Technol 18, 1163–1180 (2012). https://doi.org/10.1007/s00542-012-1464-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1464-6

Keywords

Navigation