Metal-based piezoelectric microelectromechanical systems scanner composed of Pb(Zr, Ti)O3 thin film on titanium substrate

Abstract

We have developed a titanium (Ti)-based piezoelectric microelectromechanical systems scanner driven by a Pb(Zr, Ti)O3 (PZT) thin film for the development of laser scanning displays. The 2-μm-thick PZT thin film was directly deposited on a 50-μm-thick Ti substrate by radio frequency magnetron sputtering. Prior to PZT deposition, the Ti substrate was microfabricated into the shape of a horizontal scanner by wet etching; therefore, we could fabricate a piezoelectric microactuator without using the photolithography process. We confirmed the growth of the polycrystalline PZT film with perovskite structures on the Ti substrate. We achieved an optical scanning angle of 22° at a resonant frequency of 25.4 kHz using a driving voltage of 20 V pp. These horizontal scanning properties can be applicable for laser displays.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Akedo J, Lebedev M (2000) Piezoelectric properties and poling effect of Pb(Zr, Ti)O3 thick films prepared for microactuators by aerosol deposition. Appl Phys Lett 77:1710–1712

    Article  Google Scholar 

  2. Asai N, Matsuda R, Watanabe M, Takayama H, Yamada S, Mase A, Shikida M, Sato K, Lebedev M, Akedo J (2003) Novel high resolution optical scanner actuated by aerosol deposited PZT films. In: IEEE the 16th annual international conference on MEMS-03, Kyoto, pp 247–250

  3. Berlincourt DA, Cmolik C, Jaffe H (1960) Piezoelectric properties of polycrystalline lead titanate zirconate compositions. Proc IRE 48:220–229

    Article  Google Scholar 

  4. Debray A, Ludwig A, Bourouina T, Asaoka A, Tiercelin N, Reyne G, Oki T, Quandt E, Muro H, Fujita H (2004) Application of a multilayered magnetostrictive film to a micromachined 2-D optical scanner. J Microelectromech Syst 13:264–271

    Article  Google Scholar 

  5. Filhol F, Defay E, Divoux C, Zinck C, Delaye MT (2005) Resonant micro-mirror excited by a thin-film piezoelectric actuator for fast optical beam scanning. Sens Actuators A 123–124:483–489

    Google Scholar 

  6. Gokdel YD, Sarioglu B, Mutlu S, Yalcinkaya AD (2009) Design and fabrication of two-axis micromachined steel scanners. J Micromech Microeng 19:075001

    Article  Google Scholar 

  7. Hane K, Sasaki M (2008) Micro-mirrors. In: Gianchandani YB, Tabata O, Zappe H (eds) Comprehensive microsystems 3. Elsevier, Amsterdam, pp 1–63

    Google Scholar 

  8. Iseki T, Okumura M, Sugawara T (2010) High-speed and wide-angle deflection optical MEMS scanner using piezoelectric actuation. IEEJ Trans Electr Electron Eng 5:361–368

    Article  Google Scholar 

  9. Kanda K, Kanno I, Kotera H, Wasa K (2009) Simple fabrication of metal-based piezoelectric MEMS by direct deposition of Pb(Zr, Ti)O3 thin films on titanium substrates. J Microelectromech Syst 18:610–615

    Article  Google Scholar 

  10. Kanno I, Kotera H, Wasa K (2003) Measurement of transverse piezoelectric properties of PZT thin films. Sens Actuators A 107:68–74

    Article  Google Scholar 

  11. Kobayashi T, Tsaur J, Maeda R (2005) Fabrication of optical micro scanner driven by PZT actuators. Jpn J Appl Phys 44:7078–7082

    Article  Google Scholar 

  12. Koh KH, Kobayashi T, Hsiao FL, Lee C (2010) Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors. Sens Actuators A 162:336–347

    Article  Google Scholar 

  13. Ledermann N, Muralt P, Baborowski J, Gentil S, Mukati K, Cantoni M, Seifert A, Setter N (2003) {100}-Textured, piezoelectric Pb(Zrx, Ti1−x)O3 thin films for MEMS: integration, deposition and properties. Sens Actuators A 105:162–170

    Article  Google Scholar 

  14. Lee JW, Lin Y, Kaushik N, Sharma P, Inoue A, Esashi M, Gessner T (2011) Development of the micro-mirror with large scanning angle using FE-based metallic glass thin film. In: 16th international solid-state sensors, actuators and microsystems conference, pp 2912–2915

  15. Miyajima H, Asaoka N, Arima M, Minamoto Y, Murakami K, Tokuda K, Matsumoto K (2001) A durable, shock-resistant, electromagnetic optical scanner with polyimide-based hinges. J Microelectromech Syst 10:418–424

    Article  Google Scholar 

  16. Miyajima H, Akikawa T, Hidaka T, Tokuda K, Matsumoto K (2005) Experimental characterization of polyimide torsional hinges for optical scanner. Sens Actuators A 117:341–348

    Article  Google Scholar 

  17. Pan CL, Ma YT, Yin J, Kong FR, Feng ZH (2010) Miniature orthogonal optical scanning mirror excited by torsional piezoelectric fiber actuator. Sens Actuators A 165:329–337

    Google Scholar 

  18. Park JH, Akedo J, Sato H (2007) High-speed metal-based optical microscanners using stainless-steel substrate and piezoelectric thick films prepared by aerosol deposition method. Sens Actuators A 135:86–91

    Article  Google Scholar 

  19. Schenk H, Durr P, Haase T, Kunze D, Sobe U, Lakner H, Kuck H (2000) Large deflection micromechanical scanning mirrors for linear scans and pattern generation. IEEE J Sel Top Quantum Electron 6:715–722

    Article  Google Scholar 

  20. Schenk H, Durr P, Kunze D, Lakner H, Kuck H (2001) A resonantly excited 2D-micro-scanning-mirror with large deflection. Sens Actuators A 89:104–111

    Article  Google Scholar 

  21. Shackelford JF, Alexander W (2000) CRC Materials Science and Engineering Handbook. 3rd edn. CRC Press

  22. Suu K, Osawa S, Tani N, Ishikawa M, Nakamura K, Ozawa T, Sameshima K, Kamisawa A, Takasu H (1996) Preparation of (Pb, La)(Zr, Ti)O3 ferroelectric films by RF sputtering on large substrate. Jpn J Appl Phys 35:4967–4971

    Article  Google Scholar 

  23. Suzuki T, Kanno I, Loverich JJ, Kotera H, Wasa K (2006) Characterization of Pb(Zr, Ti)O3 thin films deposited on stainless steel substrates by RF-magnetron sputtering for MEMS applications. Sens Actuators A 125:382–386

    Article  Google Scholar 

  24. Tani M, Akamatsu M, Yasuda Y, Fujita H, Toshiyoshi H (2006) A combination of fast resonant mode and slow static deflection of SOI-PZT actuators for MEMS image projection display. In: Optical MEMS and their applications conference, pp 25–26

  25. Tani M, Akamatsu M, Yasuda Y, Toshiyoshi H (2007) A two-axis piezoelectric tilting micromirror with a newly developed PZT-meandering actuator. In: IEEE 20th international conference on MEMS, Hyogo, pp 699–702

  26. Urey H (2002) Tosional MEMS scanner design for high-resolution display systems. Proc SPIE 4773:27–37

    Article  Google Scholar 

  27. Yalcinkaya AD, Urey H, Brown D, Montague T, Sprague R (2006) Two-axis electromagnetic microscanner for high resolution displays. J Microelectromech Syst 15:786–794

    Article  Google Scholar 

  28. Yamada K, Kuriyama T (1998) A novel asymmetric silicon micro-mirror for optical beam scanning display. In: Proceedings of the 11th annual international workshop on MEMS, vol 98, pp 110–115

  29. Yasuda Y, Akamatsu M, Tani M, Iijima T, Toshiyoshi H (2005) Piezoelectric 2D-optical micro scanners with PZT thick films. Integr Ferroelectr 76:81–91

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Isaku Kanno.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Matsushita, S., Kanno, I., Adachi, K. et al. Metal-based piezoelectric microelectromechanical systems scanner composed of Pb(Zr, Ti)O3 thin film on titanium substrate. Microsyst Technol 18, 765–771 (2012). https://doi.org/10.1007/s00542-012-1462-8

Download citation

Keywords

  • Finite Element Method Calculation
  • Radio Frequency Magnetron Sputtering
  • Transverse Piezoelectric Effect
  • High Display Resolution
  • Unimorph Cantilever