Skip to main content
Log in

New method for selectivity enhancement of SiC field effect gas sensors for quantification of NO x

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A silicon carbide based enhancement type metal insulator field effect transistor with porous gate metallization has been investigated as a total NO x sensor operated in a temperature cycling mode. This operating mode is quite new for gas sensors based on the field effect but promising results have been reported earlier. Based on static investigations we have developed a suitable T-cycle optimized for NO x detection and quantification in a mixture of typical exhaust gases (CO, C2H4, and NH3). Significant features describing the shape of the sensor response have been extracted and evaluated with multivariate statistics (e.g. linear discriminant analysis) allowing quantification of NO x . Additional cleaning-cycles every 30 min improve the stability of the sensor further. With this kind of advanced signal processing the influence of sensor drift and cross sensitivity to ambient gases can be reduced effectively. Measurements have proven that different concentrations of NO x can be detected even in a changing mixture of other typical exhaust gases under dry and humid conditions. In addition to that, unknown concentrations of NO x can be detected based on a small set of training data. It can be concluded that the performance of GasFETs for NO x determination can be enhanced considerably with temperature cycling and appropriate signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Andersson M, Ljung P, Mattsson M, Löfdahl M, Lloyd Spetz A (2004) Investigations on the possibility of a MISiCFET sensor system for OBD and combustion control utilizing different catalytic gate materials. Top Catal 30(31):335–345. doi:10.1023/B:TOCA.0000029776.18603.74

    Google Scholar 

  • Ankara Z, Kammerer T, Gramm A, Schütze A (2004) Low power virtual sensor array based on a micro machined gas sensor for fast discrimination between H2, CO and relative humidity. Sens Actuators B 100:240–245. doi:10.1016/j.snb.2003.12.072

    Article  Google Scholar 

  • Bur C, Reimann P, Schütze A, Andersson M, Lloyd Spetz A (2010) Increasing the selectivity of Pt-gate SiC field effect gas sensors by dynamic temperature modulation. Proc IEEE Sensors Conf 2010, Waikoloa, pp 1267–1272. doi:10.1109/ICSENS.2010.5690598

  • Bur C, Reimann P, Schütze A, Andersson M, Lloyd Spetz A (2011a) New method for selectivity enhancement of SiC field effect gas sensors for quantification of NO x . In: Proceedings of SPIE 8066. doi:10.1117/12.886431

  • Bur C, Reimann P, Schütze A, Andersson M, Lloyd Spetz A (2011b) Temperature cycled operation of SiC field effect gas sensors: increasing the selectivity for improved sensor systems. In: AIP Conference Proceedings 1362, New York, pp 91–92. doi:10.1063/1.3626317

  • Classen Th, Sahner K (2011) Trends in Automotive exhaust gas sensing. In: Proceedings Sensor + Test Conference 2011, Nürnberg, Germany, pp 554–557

  • Duda RO, Hart PE, Stork DG (2000) Pattern Classification, 2nd edn. Wiley, New York

    Google Scholar 

  • Eicker H (1977) Method and apparatus for determining the concentration of one gaseous component in a mixture of gases, US patent no. 4012692

  • Eriksson M, Ekedahl LG (1998) Hydrogen adsorption states at the Pd/SiO2 interface and simulation of the response of Pd metal-oxide-semiconductor hydrogen sensor. J Appl Phys 83:3947–3951. doi:10.1063/1.367150

    Article  Google Scholar 

  • Gramm A, Schütze A (2003) High performance vapor identification with a two sensor array using temperature cycling and pattern classification. Sens Actuators B 95:58–65. doi:10.1016/S0925-4005(03)00404-0

    Article  Google Scholar 

  • Gutierrez-Osuna R (2002) Pattern analysis for machine olfaction. IEEE Sens J 2(3):189–202. doi:0.1109/JSEN.2002.800688

    Article  Google Scholar 

  • Hunter GW, Nuedeck PG, Jefferson GD, Madzsar CG, Liu CC, Wu HQ (1993) The development of hydrogen sensor technology, NASA Lewis Research Center. NASA Tech Memor 106:141

    Google Scholar 

  • Jobson E (2004) Future challenges in automotive emission control. Top Cata 28(1–4):191–199. doi:10.1023/B:TOCA.0000024350.93474.d1

    Article  Google Scholar 

  • Kammerer T, Ankara Z, Schütze A (2003) GaSTON-a versatile platform for intelligent gas detection systems and its application for fast discrimination of fuel vapors. Eurosensors XVII

  • Koebel M, Elsener M, Kleemann M (2000) Urea-SCR: a promising technique to reduce NO x emissions from automotive diesel engines. Catal Today 59:335–345. doi:10.1016/S0920-5861(00)00299-6

    Article  Google Scholar 

  • Larsson O, Göras A, Nytomt J, Carlsson C, Llyod Spetz A, Artursson T, Holmberg M, Lundström I, Ekedahl LG, Tobias P (2002) Estimation of air fuel ratio of individual cylinders in SI engines by mean of MISiC sensor signals in a linear regression model. SAE 2002-01-0847. doi:10.4271/2002-01-0847

  • Lee AP, Reedy BJ (1999) Temperature modulation in semiconductor gas sensing. Sens Actuators B 60:35–42. doi:10.1016/S0925-4005(99)00241-5

    Article  Google Scholar 

  • Lloyd Spetz A, Savage S (2003) Advances in FET chemical gas sensors. In: Chocke WJ, Matsunami H, Pensl G (eds) Recent Major Advances in SiC. Springer, Berlin, pp 879–906

    Google Scholar 

  • Lloyd Spetz A, Arbab A, Lundström I (1992) Gas sensors for high temperature operation based on metal oxide silicon carbide (MOSiC) devices. Proc Eurosensors V I:9. doi:10.1016/0925-4005(93)85022-3

    Google Scholar 

  • Lösch M, Baumbach M, Schütze A (2008) Ozone detection in the ppb-range with improved stability and reduced cross sensitivity. Sens Actuators B 130:367–373. doi:10.1016/j.snb.2007.09.033

    Article  Google Scholar 

  • Lundström I, Shivaraman S, Svensson C, Lundkvist L (1975) A hydrogen-sensitive MOS field-effect transistor. Appl Phys Lett 26:55. doi:10.1063/1.88053

    Article  Google Scholar 

  • Lundström I, Sundgren H, Winquist F, Eriksson M, Krantz-Rülcker C, Lloyd Spetz A (2007) Twenty-five years of field effect gas sensor research in Linköping. Sens Actuators B 121:247–262. doi:10.1016/j.snb.2006.09.046

    Article  Google Scholar 

  • Madden HH (1978) Comments on the Savitzky–Golay convolution method for least squares fit smoothing and differentiation of digital data. Anal Chem 50(9):1383–1386. doi:10.1021/ac50031a048

    Article  Google Scholar 

  • Reimann P, Horras S, Schütze A (2009) Field-test system for underground fire detection based on semiconductor gas sensors. In: Proceedings of IEEE sensors conference 2009. Christchurch, NZ, pp 659–664. doi:10.1109/ICSENS.2009.5398337

  • Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639. doi:10.1021/ac60214a047

    Article  Google Scholar 

  • Schalwig J, Kreisl P, Ahlers S, Müller G (2002) Response mechanism of SiC-based MOS field effect gas sensors. IEEE Sens J 2(5):394–402. doi:10.1109/JSEN.2002.806214

    Article  Google Scholar 

  • Schütze A, Gramm A, Rühl T (2004) Identification of organic solvents by a virtual multisensor system with hierarchical classification. IEEE Sens J 4(6):857–863. doi:10.1109/JSEN.2004.833514

    Article  Google Scholar 

  • Sears WM, Colbow K, Consadori F (1989a) Algorithms to improve the selectivity of thermally cycled tin oxide gas sensors. Sens Actuators B 19:333–349. doi:10.1016/0250-6874(89)87084-2

    Article  Google Scholar 

  • Sears WM, Colbow K, Consadori F (1989b) General characteristics of thermally cycled tin oxide gas sensors. Sens Actuators B 4:351–359. doi:10.1088/0268-1242/4/5/004

    Google Scholar 

  • Steiner J, Termonia Y, Deltour J (1972) Comments on smoothing and differentiation of data by least square procedure. Anal Chem 44(11):1906–1909. doi:10.1021/ac60319a045

    Article  Google Scholar 

  • Wingbrant H, Svenningstorp H, Salomonsson P, Kubinski D, Visser JH, Löfdahl M, Lloyd Spetz A (2005) Using a MISiC-FET sensor for detecting NH3 in SCR systems. IEEE Sens J 5(5):1099–1105. doi:10.1109/JSEN.2005.854489

    Article  Google Scholar 

  • 3S—Sensors, Signal processing and Systems GmbH, Saarbrücken, Germany. www.3s-ing.de

  • ACREO AB, Kista, Sweden. www.acreo.se

  • Heraeus Holding GmbH, Hanau, Germany. www.heraeus-sensor-technology.com

Download references

Acknowledgments

The authors would like to thank SenSiC AB, Kista, Sweden, for providing the sensors and 3S GmbH, Saarbrücken, Germany, for providing the hardware for control and read-out of the sensors. Research grants are acknowledged from the Swedish Research Council, the VINN Excellence Center at Linköping University, Sweden, in Research and Innovation on Functional Nanoscale Materials (FunMat) by the Swedish Governmental Agency for Innovation Systems (VINNOVA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Bur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bur, C., Reimann, P., Andersson, M. et al. New method for selectivity enhancement of SiC field effect gas sensors for quantification of NO x . Microsyst Technol 18, 1015–1025 (2012). https://doi.org/10.1007/s00542-012-1434-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1434-z

Keywords

Navigation