Skip to main content
Log in

Improved process flow for buried channel fabrication in silicon

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The fabrication of microchannels using MEMS technology always attracted the attention of researchers and designers of microfluidic systems. Our group focused on realizing buried fluidic channels in silicon substrates involving deep reactive ion etching. To meet the demands of today’s complex microsystems, our aim was to create passive microfluidics in the bulk Si substrate well below the surface, while retaining planarity of the wafer. Therefore additional lithographic steps for e.g. integrating circuit elements are still possible on the chip surface. In this paper, a more economic process flow is applied which also contains a selective edge-masking method in order to eliminate under-etching phenomenon at the top of the trenches to be filled. The effect of Al protection on the subsequent etch steps is also discussed. Applying the proposed protection method, our group successfully fabricated sealed microchannels with excellent surface planarity above the filled trenches. Due to the concept, the integration of the technology in hollow silicon microprobes fabrication is now available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abdolvand R, Ayazia F (2008) An advanced reactive ion etching process for very high aspect-ratio sub-micron wide trenches in silicon. Sens Actuator A 144:109–116

    Article  Google Scholar 

  • Agarwal A, Ranganathan N, Ong WL, Tang KC, Yobas L (2008) Self-sealed circular channels for micro-fluidics. Sens Actuator A 142:80–87

    Article  Google Scholar 

  • Cardinaud C, Peignon M, Tessier P (2000) Plasma etching: principles, mechanisms, application to micro- and nano-technologies. Appl Surf Sci 164:72–83

    Article  Google Scholar 

  • Chen J, Wise KD, Hetke JF, Bledsoe SC (1997) A multichannel neural probe for selective chemical delivery at the cellular level. IEEE Trans Biomed Eng. 44:760–769

    Article  Google Scholar 

  • Cheung KC, Djupsund K, Dan Y, Lee PE (2003) Implantable multichannel electrode array based on SOI technology. J Microelectromech Syst 12:179–188

    Article  Google Scholar 

  • de Boer MJ, Tjerkstra RW, Berenschot JW, Jansen HV, Burger GJ, Gardeniers JGH, Elwenspoek M, van den Berg A (2000) Micromachining of buried micro channels in silicon. J Microelectromech Syst 9:94–103

    Article  Google Scholar 

  • Dijkstra M, de Boer MJ, Berenschot JW, Lammerink TSJ, Wiegerink RJ, Elwenspoek M (2007) A versatile surface channel concept for microfluidic applications. J Micromech Microeng 17:1971–1977

    Article  Google Scholar 

  • Fernandez LJ, Altuna A, Tijero M, Gabriel G, Villa R, Rodraguez J, Batlle M, Vilares R, Berganzo J, Blanco FJ (2009) Study of functional viability of SU-8 based microneedles for neural applications. J Micromech Microeng 19:025007

    Article  Google Scholar 

  • Ganji B A and Majlis B Y (2006) Deep trenches in silicon structure using DRIE method with aluminum as an etching mask. In: IEEE interernational conference on semiconductor electronics pp 41–47

  • Gao F, Ylinen S, M. Kainlauri M and Kapulainen M (2011) A modified Bosch process for smooth sidewall etching. In: Proceedings of 22nd micromechanics and microsystems technology Europe workshop, Paper A12

  • Jansen HV, Gardeniers H, de Boer MJ, Elwenspoek M, Fluitman J (1996) A survey on the reactive ion etching of silicon in microtechnology. J Micromech Microeng 6:14–28

    Article  Google Scholar 

  • Jansen HV, de Boer MJ, Wiegerink R, Tas N, Smulders E, Neagu C, Elwenspoek M (1997) RIE lag in high aspect ratio trench etching of silicon. Microelectron Eng 35:45–50

    Article  Google Scholar 

  • Jansen HV, de Boer MJ, Unnikrishnan S, Louwerse MC, Elwenspoek M (2009) Black silicon method X. J Micromech Microeng 19:033001

    Article  Google Scholar 

  • Paik SJ, Byuna S, Lima JM, Park Y, Lee A, Chung S, Changa J, Chuna K, Choa D (2004) In-plane single-crystal-silicon microneedles for minimally invasive microfluid systems. Sens Actuator A 114:276–284

    Article  Google Scholar 

  • Park S, Jang Y, Kim H C and Chun K (2008) Fabrication of drug delivery system with piezoelectric micropump for neural probe. In: Proceedings of 23rd International Technical Conference on Circuits/Systems, Computers and Communications 2008, Yamaguchi, Japan pp 1149–1152

  • Roxhed N, Griss P, Stemme G (2007) A method for tapered deep reactive ion etching using a modified Bosch process. J Micromech Microeng 17:1087–1092

    Article  Google Scholar 

  • Rusu C, van’t Oever R, de Boer MJ, Jansen HV, Berenschot JW, Bennink ML, Kanger JS, de Grooth BG, Elwenspoek M, Greve J, Brugger J, van den Berg A (2001) Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers. J Microelectromech Syst 10:238–245

    Article  Google Scholar 

  • Schläpfer TE, Bewernick BH (2009) Deep brain stimulation for psychiatric disorders—state of the art. Adv Tech Stand Neurosurg 34:37–57

    Article  Google Scholar 

  • Seidl K, Spieth S, Herwik S, Steigert J, Zengerle R, Paul O, Ruther P (2010) In-plane silicon probes for simultaneous neural recording and drug delivery. J Micromech Microeng 20:105006

    Article  Google Scholar 

  • Sparks D, Hubbard T (2004) Micromachined needles and lancets with design adjustable bevel angles. J Micromech Microeng 14:1230–1233

    Article  Google Scholar 

  • Ziegler D, Suzuki T, Takeuchi S (2006) Fabrication of flexible neural probes with built-in microfluidic channels by thermal bonding of parylene. J Microelectromech Syst 15:1477–1482

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff of MEMS Laboratory, MTA-MFA for their precise contribution to this work. This work was partially supported by ENIAC JTI and the National Innovation Office (NIH) via CAJAL4EU project, the Hungarian National Research Fund (OTKA) via NF69262. The János Bolyai fellowship of the Hungarian Academy of Sciences is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Fekete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fekete, Z., Pongrácz, A., Fürjes, P. et al. Improved process flow for buried channel fabrication in silicon. Microsyst Technol 18, 353–358 (2012). https://doi.org/10.1007/s00542-012-1430-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-012-1430-3

Keywords

Navigation