Skip to main content
Log in

Laser fabrication of micropores and their integration to microfluidic platforms for DNA electrophoresis

Microsystem Technologies Aims and scope Submit manuscript


The work presents an alternative method for the manufacture of micropores by using the combination of laser ablation and wet etching. The process of laser ablation was done on silicon (Si) wafers with silicon nitride (Si3N4) used as a sacrificial layer. The size of the pores was carefully controlled by following an optical technique. The method exhibits a series of advantages in relation micromachining techniques previously used. The fabricated pores were then integrated to polydimethylsiloxane (PDMS) microchannels, which constitutes a novel setup to be considered for microfluidic applications. Furthermore, as the system is addressed to study the electrically-driven transport of macromolecules, deoxyribonucleic acid (DNA) electrophoresis was performed in the fabricated microsystems to prove the principle. Also for these purposes, the electric field throughout the microchannel and pore region was studied in details by using numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  • Bassous E (1978) Fabrication of novel three-dimensional microstructures by the anisotropic etching of (100) and (110) silicon. IEEE Trans Electron Devices 25(10):1178–1185

    Article  Google Scholar 

  • Chen Z, Jiang Y, Dunphy DR, Adams DP, Hodges C, Liu N, Zhang N, Xomeritakis G, Jin X, Aluru N (2010) DNA translocation through an array of kinked nanopores. Nat Mater 9(8):667–675

    Article  Google Scholar 

  • Dudley ME, Kolasinski KW (2008) Wet etching of pillar-covered silicon surfaces: formation of crystallographically defined macropores. J Electrochem Soc 155:H164

    Article  Google Scholar 

  • Fologea D, Gershow M, Ledden B, McNabb DS, Golovchenko JA, Li J (2005a) Detecting single stranded DNA with a solid state nanopore. Nano Lett 5(10):1905–1909. doi:10.1021/nl051199m

    Article  Google Scholar 

  • Fologea D, Uplinger J, Thomas B, McNabb DS, Li J (2005b) Slowing DNA translocation in a solid-state nanopore. Nano Lett 5(9):1734–1737. doi:10.1021/nl051063o

    Article  Google Scholar 

  • Fologea D, Brandin E, Uplinger J, Branton D, Li J (2007a) DNA conformation and base number simultaneously determined in a nanopore. Electrophoresis 28(18):3186–3192

    Article  Google Scholar 

  • Fologea D, Ledden B, McNabb DS, Li J (2007b) Electrical characterization of protein molecules by a solid-state nanopore. Appl Phys Lett 91:053901

    Article  Google Scholar 

  • Gierhart BC, Howitt DG, Chen SJ, Zhu Z, Kotecki DE, Smith RL, Collins SD (2008) Nanopore with transverse nanoelectrodes for electrical characterization and sequencing of DNA. Sens Actuators B Chem 132(2):593–600

    Article  Google Scholar 

  • Heng JB, Ho C, Kim T, Timp R, Aksimentiev A, Grinkova YV, Sligar S, Schulten K, Timp G (2004) Sizing DNA using a nanometer–diameter pore. Biophys J 87(4):2905–2911

    Article  Google Scholar 

  • Keyser UF (2011) Controlling molecular transport through nanopores. J Royal Soc Interface 8(63):1369–1378

    Article  Google Scholar 

  • Kim YR, Min J, Lee IH, Kim S, Kim AG, Kim K, Namkoong K, Ko C (2007) Nanopore sensor for fast label-free detection of short double-stranded DNAs. Biosens Bioelectron 22(12):2926–2931

    Article  Google Scholar 

  • Kler PA, Berli CLA, Guarnieri FA (2010) Modeling and high performance simulation of electrophoretic techniques in microfluidic chips. Microfluid Nanofluid 10(1):187–198

    Article  Google Scholar 

  • Lagerqvist J, Zwolak M, Di Ventra M (2006) Fast DNA sequencing via transverse electronic transport. Nano Lett 6(4):779–782

    Article  Google Scholar 

  • Lan WJ, Holden DA, Zhang B, White HS (2011) Nanoparticle transport in conical-shaped nanopores. Anal Chem 83(10):3840–3847

    Article  Google Scholar 

  • Li D (2004) Electrokinetics in microfluidics, vol 2. Elsevier Academic Press, London

    Google Scholar 

  • Li J, Gershow M, Stein D, Brandin E, Golovchenko J (2003) DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater 2(9):611–615

    Article  Google Scholar 

  • Park SR, Peng H, Ling XS (2007) Fabrication of nanopores in silicon chips using feedback chemical etching. Small 3(1):116–119

    Article  Google Scholar 

  • Stellwagen NC, Stellwagen E (2009) Effect of the matrix on DNA electrophoretic mobility. J Chromatogr A 1216(10):1917–1929

    Article  Google Scholar 

  • Storm AJ, Storm C, Chen J, Zandbergen H, Joanny JF, Dekker C (2005) Fast DNA translocation through a solid-state nanopore. Nano Lett 5(7):1193–1197

    Article  Google Scholar 

  • Tabeling P (2005) Introduction to microfluidics. Oxford University Press, USA

    Google Scholar 

  • Toro C, Lerner B, Perez MS, Lasorsa C, Rinaldi C, Boselli A, Lamagna A (2011) A new combined method to make microcavities in silicon wafer (100). In: Proceedings of LPM2011—the 12th international symposium on laser precision microfabrication, Japan

Download references


CLAB thanks the financial support from CONICET (PIP 0317) and Universidad Nacional del Litoral (CAI+D 65/328), Argentina. MEMS lab thanks the financial support from CNEA, CONICET and ANPCyT PAE-2006. We would like to thank M.J. Dieguez for technical advice and discussion.

Author information

Authors and Affiliations


Corresponding author

Correspondence to B. Lerner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerner, B., Perez, M.S., Kler, P.A. et al. Laser fabrication of micropores and their integration to microfluidic platforms for DNA electrophoresis. Microsyst Technol 18, 429–435 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: