Skip to main content
Log in

Air-coupled linear and sparse cMUT array manufactured using MUMPs process

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

An assessment of the standard fabrication Micro-Electro-Mechanical Systems (MEMS) process Multi-User MEMS Processes (MUMPs) for complex air-coupled capacitive Micromachined Ultrasonic Transducer array aperture manufacture is reported. A 1-D linear array and a 2-D sparse symmetric binned-array have been designed and manufactured, and then characterised experimentally using electrical impedance measurements, laser vibrometry and air-coupled field measurement; the experimental data are supported by simulated data using Finite Element technique and field simulation based on Huygens’ principle. A methodology for the manufacture of the array structures using the MUMPs process is described. Electrical characterisation shows the devices operation at 770 kHz and the existence of large parasitic capacitances and electrical losses. Mechanical crosstalk of array substrate has been measured at −40 dB using laser vibrometry. Moreover, the laser vibrometry measurement and the field characteristics of one element reveal that each element operates as a piston radiator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adamowski JC, Silva ECN, Simon C, Buiochi F, Higuti RT (1994) Finite element modeling of an ultrasonic capacitive transducer. In: IEEE Ultrasonics Symposium Proceedings 1994, vol 1262. 1–4 Nov 1994, pp 1261–1264

  • Álvarez-Arenas TEG (2004) Acoustic impedance matching of piezoelectric transducers to the air. IEEE Transac Ultrasonic Ferroelectric Freq Control 51(5):624–633

    Article  Google Scholar 

  • Carter J, Cowen A, Hardy B, Mahadevan R, Stonefield M, Wilcenski S (2005) Poly MUMPs design handbook. Revision 11.0. edn. MEMSCAP Inc, Durham

  • Ergun AS, Yaralioglu GG, Khuri-Yakub BT (2003) Capacitive micromachined ultrasonic transducers: theory and technology. J Aerospace Eng 16(2):76–84

    Article  Google Scholar 

  • Ergun AS, Huang Y, Zhuang X, Oralkan O, Yarahoglu GG, Khuri-Yakub BT (2005) Capacitive micromachined ultrasonic transducers: fabrication technology. IEEE Transac Ultrasonic Ferroelectric Freq Control 52(12):2242–2258

    Article  Google Scholar 

  • Grandia WA, Fortunko CM (1995) NDE applications of air-coupled ultrasonic transducers. In: Proceedings of the IEEE Ultrasonics Symposium, 7–10 Nov, pp 697–709

  • Gururaja TR, Schulze WA, Cross LE, Newham RE, Auld BA, Wang YJ (1985) Piezoelectric composite materials for ultrasonic transducer applications. Part I: Resonant modes of vibration of PZT rod-polymer composites. IEEE Transac Sonic Ultrasonic 32(4):481–498

    Google Scholar 

  • Haller MI, Khuri-Yakub BT (1994) A surface micromachined electrostatic ultrasonic air transducer. In: Proceedings of the IEEE Ultrasonics Symposium, 1–4 Nov, pp 1241–1244

  • Hendricks WJ (1991) The totally random versus the bin approach for random arrays. IEEE Transac Antenna Propag 39(12):1757–1762

    Article  Google Scholar 

  • Kelly SP, Farlow R, Hayward G (1996) Applications of through-air ultrasound for rapid NDE scanning in the aerospace industry. Ultrasonic Ferroelectric Freq Control IEEE Transac 43(4):581–591

    Article  Google Scholar 

  • Liu J, Oakley C, Shandas R (2009) Capacitive micromachined ultrasonic transducers using commercial multi-user MUMPs process: capability and limitations. Ultrasonics 49(8):765–773

    Article  Google Scholar 

  • Loertscher H, Grandia B, Strycek J, Grandia WA (1996) Airscan transducers, technique and applications. NDTnet 1(9):1–4

    Google Scholar 

  • Magori V (1994) Ultrasonic sensors in air. In: IEEE Ultrasonics Symposium Proceedings, vol 471. 1–4 Nov 1994, pp 471–481

  • Martínez O, Martín CJ, Octavio A, Godoy G, Montero de Espinosa F, Gómez-Ullate L (2007) Increasing the active surface in random sparse 2D arrays. In: Proceedings of the International Congress on Ultrasonics

  • Mason WP (1942) Electromechanical transducers and wave filters. Van Nostrand, NY

    Google Scholar 

  • Massa F (1965) Ultrasonic transducers for use in air. In: Proceedings of the IEEE, pp 1363–1371

  • Montero de Espinosa F, Gomez TE, Albareda A, Perez R, Casals JA (2000) High sensitive piezoelectric transducers for NDE air borne applications. In: Proceedings of the IEEE Ultrasonics Symposium, pp 1073–1076

  • Octavio Manzanares A, Montero de Espinosa Freijo F (2009) Ultrasonic transducers with resonant cavities as emitters for air-borne applications. Boletín de la Sociedad Española de Cerámica y Vidrio 48(4):205–209

  • Octavio A, Martín CJ, Gómez-Ullate Y, Martínez O, Gómez-Ullate L, Montero de Espinosa F, Gatta P, Domínguez M (2006) Design and characterization of air coupled ultrasonic transducers based on MUMPs. In: Proceedings of the IEEE Ultrasonics Symposium

  • Octavio A, Martin CJ, Martinez O, Hernando J, Gomez-Ullate L, Montero de Espinosa F (2007a) A linear CMUT air-coupled array for NDE based on MUMPS. In: IEEE Ultrasonics Symposium, NY, pp 2127–2130

  • Octavio A, Martínez O, Martín CJ, Gómez-Ullate L, Montero de Espinosa F (2007b) A comparison between free-anchored and anchored cMUT membranes for NDT applications using MUMPS manufacture process. In: Proceedings of the International Congress on Ultrasonics, Vienna, April 9–13

  • Oppenheim IJ, Jain A, Greve DW (2003) Electrical characterization of coupled and uncoupled MEMS ultrasonic transducers. IEEE Transac Ultrasonic Ferroelectric Freq Control 50(3):297–304

    Article  Google Scholar 

  • Schindel DW, Hutchins DA, Zou L, Sayer M (1995) The design and characterization of micromachined air-coupled capacitance transducers. IEEE Transac Ultrasonic Ferroelectric Freq Control 42(1):42–50

    Article  Google Scholar 

  • Schmerr L, Jung-Sin S (2007) Ultrasonic nondestructive evaluation systems. Springer, Incorporated

  • Xuecheng J, Oralkan O, Degertekin FL, Khuri-Yakub BT (2001) Characterization of one-dimensional capacitive micromachined ultrasonic immersion transducer arrays. Ultrasonic Ferroelectric Freq Control, IEEE Transac 48(3):750–760

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Science and Innovation under the projects DPI2007-65408-C02-01 and DPI2007-65408-C02-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Octavio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Octavio, A., O’Leary, R.L., Whiteley, S.M. et al. Air-coupled linear and sparse cMUT array manufactured using MUMPs process. Microsyst Technol 17, 1635 (2011). https://doi.org/10.1007/s00542-011-1346-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00542-011-1346-3

Keywords

Navigation