Skip to main content
Log in

A low cost approach for the fabrication of microwave phase shifter on laminates

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents a simple and low cost fabrication approach using extended printed circuit board processing techniques for an electrostatically actuated phase shifter on a common microwave laminate. This approach uses 15 μm thin copper foils for realizing the bridge structures as well as for a spacer. A polymeric thin film deposited by spin coating and patterned using lithographic process is used as a dielectric layer to improve the reliability of the device. The prototype of the phase shifter for X-band operation is fabricated and tested for electrical and electromechanical performance parameters. The realized devices have a figure of merit of 70°/dB for a maximum applied bias potential of 85 V. Since these phase shifters can be conveniently fabricated directly on microwave substrates used for feed distribution networks of phased arrays, the overall addition in cost, dimensions and processing for including these phase shifters in these arrays is minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barker NS, Rebeiz GM (1998) Distributed MEMS true-time delay phase shifters and wide-band switches. IEEE Trans Microw Theory Tech 46(11):1881–1890

    Article  Google Scholar 

  • Barker NS, Rebeiz GM (2000) Optimization of distributed MEMS transmission-line phase shifters—U-band and W-band designs. IEEE Trans Microw Theory Tech 48(11):1957–1966

    Article  Google Scholar 

  • Borgioli A, Liu Y, Nagra AS, York RA (2000) Low-loss distributed MEMS phase shifter. IEEE Microw Guid Wave Lett 10(1):7–9

    Article  Google Scholar 

  • Fangmin G, Zongsheng L, Guanglong W, Shouzheng Z, Ziqiang Z, Gengqin Y, Xiaohong G, Siqing C, Jiangfang X (2001) Millimeter wave phase shifters with periodically spaced MEMS bridges loaded. IEEE 2:769–772

    Google Scholar 

  • Ghodsian B, Jung C, Cetiner BA, Flaviis FD (2005) Development of RF-MEMS switch on PCB substrates with polyimide planarization. IEEE Sens J 5(5):950–955

    Article  Google Scholar 

  • Guo F, Zhang Y, Lin J, Kong J, Zhu S, Lai S, Zhu Z (2006) MEMS phase shifters on low-resistivity silicon wafer. Proceedings of the IEEE international conference on mechatronics and automation, Luoyang, China, pp 497–501

  • Hayden JS, Rebeiz GM (2000) 2-bit MEMS distributed X-band phase shifters. IEEE Microw Guid Wave Lett 10(12):540–542

    Article  Google Scholar 

  • Hayden JS, Rebeiz GM (2002) A low-loss Ka-band distributed MEMS 2-bit phase shifter using metal-air-meta1 capacitors. IEEE MTT-S Digest 337–340

  • http://www.microchem.com/

  • Hayden JS, Rebeiz GM (2003) Very low-loss distributed X-band and Ka-band MEMS phase shifters using metal–air–metal capacitors. IEEE Trans Microw Theory Tech 51(1):309–314

    Article  Google Scholar 

  • Lakshminarayan B, Weller T (2002) Distributed MEMS phase shifters on Silicon using tapered impedance unit cells. IEEE MTT-S Digest

  • Lakshminarayanan B, Weller TM (2006) Design and modeling of 4-bit slow-wave MEMS phase shifters. IEEE Trans Microw Theory Tech 54(1):120–127

    Article  Google Scholar 

  • Lakshminarayanan B, Weller TM (2007) Optimization and implementation of impedance-matched true-time-delay phase shifters on quartz substrate. IEEE Trans Microw Theory Tech 55(2):335–342

    Article  Google Scholar 

  • Liu Y, Borgioli A, Nagra AS, York RA (2000) K-band 3-bit low-loss distributed MEMS phase shifter. IEEE Microw Guid Wave Lett 10(10):415–417

    Article  Google Scholar 

  • McFeetors G, Okoniewski M (2006) Distributed MEMS analog phase shifter with enhanced tuning. IEEE Microw Wirel Compon Lett 16(1):34–36

    Article  Google Scholar 

  • Palei W, Liu AQ, Yu AB, Alphones A, Lee YH (2005) Optimization of design and fabrication for micromachined true time delay (TTD) phase shifters. Sens Actuators A 119:446–454

    Article  Google Scholar 

  • Ramadoss R, Sundaram A, Feldner LM (2005) RF MEMS phase shifters based on PCB MEMS technology. Electron lett 41(11):654–656

    Article  Google Scholar 

  • Ramadoss R, Lee S, Lee YC, Bright VM, Gupta KC (2006) RF-MEMS capacitive switches fabricated using printed circuit processing techniques. IEEE J Microelectromech Syst 15(6):1595–1604

    Article  Google Scholar 

  • Rebeiz GM (2003) RF MEMS theory, design, and technology. IEEE Press, New York

  • Topalli K, Unlu M, Demir S, Aydin CO, Koc S, Akin T (2006) New approach for modelling distributed MEMS transmission lines. IEE Proc-Microw Antennas Propag 153(2):152–162

    Article  Google Scholar 

  • Wang J, Ativanichayaphong T, Huang WD, Cai Y, Davis A, Chiao M, Chiao JC (2008) A distributed MEMS phase shifter on a low-resistivity silicon substrate. Sens Actuators A 144:207–212

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Goel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goel, P., Vinoy, K.J. A low cost approach for the fabrication of microwave phase shifter on laminates. Microsyst Technol 17, 1653 (2011). https://doi.org/10.1007/s00542-011-1342-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00542-011-1342-7

Keywords

Navigation