Skip to main content
Log in

Microelectromechanical resonators for radio frequency communication applications

  • Review Article
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Over the past few years, microelectromechanical system (MEMS) based on-chip resonators have shown significant potential for sensing and high frequency signal processing applications. This is due to their excellent features like small size, large frequency-quality factor product, low power consumption, low cost batch fabrication, and integrability with CMOS IC technology. Radio frequency communication circuits like reference oscillators, filters, and mixers based on such MEMS resonators can be utilized for meeting the increasing count of RF components likely to be demanded by the next generation multi-band/multi-mode wireless devices. MEMS resonators can provide a feasible alternative to the present-day well-established quartz crystal technology that is riddled with major drawbacks like relatively large size, high cost, and low compatibility with IC chips. This article presents a survey of the developments in this field of resonant MEMS structures with detailed enumeration on the various micromechanical resonator types, modes of vibration, equivalent mechanical and electrical models, materials and technologies used for fabrication, and the application of the resonators for implementing oscillators and filters. These are followed by a discussion on the challenges for RF MEMS technology in comparison to quartz crystal technology; like high precision, stability, reliability, need for hermetic packaging etc., which remain to be addressed for enabling the inclusion of micromechanical resonators into tomorrow’s highly integrated communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abdelmoneum MA, Demirci MU, Nguyen CTC (2003) Stemless wine-glass-mode disk micromechanical resonators. In: Proceedings of the 16th IEEE International Conference on Micro Electro Mechanical Systems, Kyoto, Japan, pp 698–701

  • Bannon FD, Clark JR, Nguyen CTC (1996) High frequency microelectromechanical IF filters. In: Technical Digest of IEEE International Electron Devices Meeting, San Francisco, CA, pp 773–776

  • Bannon FD, Clark JR, Nguyen CTC (2000) High-Q HF microelectromechanical filters. IEEE J Solid-State Circ 35:512–526

    Article  Google Scholar 

  • Basu J, Bhattacharyya TK (2011) Comparative analysis of a variety of high-Q capacitively transduced bulk-mode microelectromechanical resonator geometries. Microsyst Technol 17(8):1361–1371

    Article  Google Scholar 

  • Bhave SA, Di G, Maboudian R, Howe RT (2005) Fully-differential poly-SiC Lame mode resonator and checkerboard filter. In: Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems, Miami, pp 223–226

  • Brand O (2006) Microsensor integration into systems-on-chip. Proc IEEE 94(6):1160–1176

    Article  Google Scholar 

  • Brand O, Fedder GK (2005) Advanced micro & nano systems, volume 2: CMOS-MEMS. Wiley-VCH, Weinheim

    Google Scholar 

  • Brotz J (2004) Damping in CMOS-MEMS resonators. Master’s thesis, Electrical & Computer Engineering, Carnegie Mellon University, Pittsburgh, PA

  • Candler RN, Hopcroft M, Kim B, Park WT, Melamud R, Agarwal M, Yama G, Partridge A, Lutz M, Kenny TW (2006) Long-term and accelerated life testing of a novel single-wafer vacuum encapsulation for MEMS resonators. J Microelectromech Syst 15(6):1446–1456

    Article  Google Scholar 

  • Chandorkar SA, Agarwal M, Melamud R, Candler RN, Goodson KE, Kenny TW (2008) Limits of quality factor in bulk-mode micromechanical resonators. In: Proceedings of the 21st IEEE International Conference on MicroElectroMechanical Systems, Tucson, Arizona, pp 74–77

  • Cioffi KR, Hsu WT (2005) 32 kHz MEMS-based oscillator for low-power applications. In: Proceedings of the 2005 IEEE International Frequency Control Symposium and Exposition, Vancouver, BC, pp 551–558

  • Cioffi KR, Simoneau M, Lacroix D, Hsu WT (2010) Counter-based resonator frequency compensation. US Patent 7679466

  • Clark JR, Hsu WT, Abdelmoneum MA, Nguyen CTC (2005) High-Q UHF micromechanical radial-contour mode disk resonators. J Microelectromech Syst 14(6):1298–1310

    Article  Google Scholar 

  • De Los Santos HJ, Fischer G, Tilmans HAC, van Beek JTM (2004) RF MEMS for ubiquitous wireless connectivity: part II-application. IEEE Mirowave Mag 5(4):50–65

    Article  Google Scholar 

  • Demirci MU, Nguyen CTC (2005) A low impedance VHF micromechanical filter using coupled-array composite resonators. In: Technical Digest of the 13th International Conference on Solid-State Sensors & Actuators (TRANSDUCERS), Seoul, Korea, pp 2131–2134

  • Demirci MU, Nguyen CTC (2006) Mechanically corner-coupled square microresonator array for reduced series motional resistance. J Microelectromech Syst 15(6):1419–1436

    Article  Google Scholar 

  • Esashi M (2008) Wafer level packaging of MEMS. J Micromech Microeng 18(7):073001

    Article  Google Scholar 

  • Fedder GK (2005) CMOS-MEMS resonant mixer-filters. In: Technical Digest of 2005 IEEE International Electron Devices Meeting, Washington, DC, pp 274–277

  • Fedder GK, Howe RT, Liu TJK, Quevy EP (2008) Technologies for cofabricating MEMS and electronics. Proc IEEE 96(2):306–322

    Article  Google Scholar 

  • Greywall DS, Busch PA (2002) Coupled micromechanical drumhead resonators with practical applications as electromechanical bandpass filters. J Micromech Microeng 12:925–938

    Article  Google Scholar 

  • Hao Z, Ayazi F (2007) Support loss in the radial bulk-mode vibrations of center-supported micromechanical disk resonators. Sens Actuators A 134:582–593

    Article  Google Scholar 

  • Hao Z, Pourkamali S, Ayazi F (2004) VHF single-crystal silicon elliptic bulk-mode capacitive disk resonators-part I: design and modeling. J Microelectromech Syst 13(6):1043–1053

    Article  Google Scholar 

  • Highbeam Research (2006) SiTime introduces the world’s smallest and thinnest high-Q MHz resonator. http://www.highbeam.com. Accessed 20 June 2011

  • Ho GK, Sundaresan K, Pourkamali S, Ayazi F (2006) Temperature compensated IBAR reference oscillators. In: Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, pp 910–913

  • Hopcroft MA, Agarwal M, Park KK, Kim B, Jha CM, Candler RN, Yama G, Murmann B, Kenny TW (2006) Temperature compensation of a MEMS resonator using quality factor as a thermometer. In: Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, pp 222–225

  • Howe RT, Muller RS (1983) Polycrystalline silicon micromechanical beams. J Electrochem Soc 130:1420–1423

    Article  Google Scholar 

  • Hsu WT, Nguyen CTC (2002) Stiffness-compensated temperature insensitive micromechanical resonators. In: Proceedings of the 15th IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, pp 731–734

  • Hsu WT, Clark JR, Nguyen CTC (2000) Mechanically temperature-compensated flexural-mode micromechanical resonators. In: Technical Digest of IEEE International Electron Devices Meeting, San Francisco, pp 399–402

  • Huang WL (2008) Fully monolithic CMOS nickel micromechanical resonator oscillator for wireless communications. Ph.D. thesis, Electrical Engineering, University of Michigan, Ann Arbor

  • Huang WL, Ren Z, Nguyen CTC (2006) Nickel vibrating micromechanical disk resonator with solid dielectric capacitive-transducer gap. In: Proceedings of 2006 IEEE International Frequency Control Symposium and Exposition, Miami, pp 839–847

  • Huikai X, Erdmann L, Xu Z, Gabriel KJ, Fedder GK (2002) Post-CMOS processing for high-aspect ratio integrated silicon microstructures. J Microelectromech Syst 11(2):93–101

    Article  Google Scholar 

  • Jia G, Madou MJ (2005) Chapter 3: MEMS fabrication. In: Gad-el-Hak M (ed) MEMS: design and fabrication. CRC Press, Boca Raton, pp 3-1–3-214

  • Johnson RA (1983) Mechanical filters in electronics, Wiley Series on Filters. Willey, New York

    Google Scholar 

  • Kaajakari V, Mattila T, Oja A, Kiihamaki J, Seppa H (2004) Square-extensional mode single-crystal silicon micromechanical resonator for low-phase-noise oscillator applications. IEEE Electron Dev Lett 25:173–175

    Article  Google Scholar 

  • Kim HC, Chun K (2007) RF MEMS technology. IEEJ Trans 2:249–261

    Google Scholar 

  • Kim B, Candler RN, Hopcroft M, Agarwal M, Park WT, Kenny TW (2007a) Frequency stability of wafer-scale film encapsulated silicon based MEMS resonators. Sens Actuators A 136:125–131

    Article  Google Scholar 

  • Kim B, Melamud R, Hopcroft MA, Chandorkar SA, Bahl G, Messana M, Candler RN, Yama G, Kenny T (2007b) Si–SiO2 composite MEMS resonators in CMOS compatible wafer-scale thin-film encapsulation. In: Proceedings of the IEEE International Frequency Control Symposium, Geneva, pp 1214–1219

  • Lam CS (2008) A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry. In: Proceedings of the 2008 IEEE International Ultrasonics Symposium, Beijing, China, pp 694–704

  • Lee JEY, Bahreyni B, Zhu Y, Seshia AA (2008) A single-crystal-silicon bulk-acoustic-mode microresonator oscillator. IEEE Electron Dev Lett 29(7):701–703

    Article  MATH  Google Scholar 

  • Lee JEY, Seshia AA (2009) 5.4-MHz single-crystal silicon wine glass mode disk resonator with quality factor of 2 million. Sens Actuators A 156:28–35

    Article  Google Scholar 

  • Lee S, Demirci MU, Nguyen CTC (2001) A 10-MHz Micromechanical resonator Pierce reference oscillator for communications. In: Proceedings of the 11th International Conference on Solid State Sensors and Actuators, Munich, pp 1094–1097

  • Leeson DB (1966) A simple model of feedback oscillator noise spectrum. Proc IEEE 54:329–330

    Article  Google Scholar 

  • Li SS, Lin YW, Xie Y, Ren Z, Nguyen CTC (2004) Micromechanical “hollow-disk” ring resonators. In: Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems, Maastricht, The Netherlands, pp 821–824

  • Li SS, Lin YW, Ren Z, Nguyen CTC (2006) Disk-array design for suppression of unwanted modes in micromechanical composite-array filters. In: Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, pp 866–869

  • Lin YW, Lee S, Li SS, Xie Y, Ren Z, Nguyen CTC (2004a) 60-MHz wine glass micromechanical disk reference oscillator. In: Digest of Technical Papers of 2004 IEEE International Solid-State Circuits Conference, San Francisco, pp 322–323

  • Lin YW, Lee S, Li SS, Xie Y, Ren Z, Nguyen CTC (2004b) Series-resonant VHF micromechanical resonator reference oscillators. IEEE J Solid-State Circ 39(12):2477–2491

    Article  Google Scholar 

  • Lin YW, Li SS, Ren Z, Nguyen CTC (2005) Low phase noise array-composite micromechanical wine-glass disk oscillator. In: Technical Digest of 2005 IEEE International Electron Devices Meeting, Washington, DC, pp 281–284

  • Lucyszyn S (2004) Review of radio frequency microelectromechanical systems technology. IEE Proc Sci Meas Technol 151(2):93–103

    Article  Google Scholar 

  • Mattila T, Jaakkola O, Kiihamaki J, Karttunen J, Lamminmaki T, Rantakari P, Oja A, Seppa H, Kattelus H, Tittonen I (2002) 14 MHz micromechanical oscillator. Sens Actuators A 97–98:497–502

    Google Scholar 

  • Melamud R, Hopcroft M, Jha C, Kim B, Chandorkar S, Candler R, Kenny TW (2005) Effects of stress on the temperature coefficient of frequency in double clamped resonators. In: Digest of Technical Papers of 13th International Conference on Solid State Sensors, Actuators and Microsystems (TRANSDUCERS), Seoul, pp 392–395

  • Merono JD (2007) Integration of CMOS-MEMS resonators for radiofrequency applications in the VHF and UHF bands. PhD thesis, Departament d’Enginyeria Electronica, UAB

  • Mestrom RMC, Fey RHB, van Beek JTM, Phan KL, Nijmeijer H (2008) Modelling the dynamics of a MEMS resonator: Simulations and experiments. Sens Actuators A 142(1):306–315

    Article  Google Scholar 

  • Nabki F, Cicek PV, Dusatko TA, El-Gamal MN (2011) Low-Stress CMOS-Compatible Silicon Carbide Surface-Micromachining Technology—Part II: Beam Resonators for MEMS Above IC. J Microelectromech Syst 20(3):730–744

    Article  Google Scholar 

  • Naito Y, Helin P, Nakamura K, De Coster J, Guo B, Haspeslagh L, Onishi K, Tilmans HAC (2010) High-Q torsional mode Si triangular beam resonators encapsulated using SiGe thin film. In: Technical Digest of 2010 IEEE International Electron Devices Meeting, San Francisco, pp 7.1.1–7.1.4

  • Nathanson HC, Newell WE, Wickstrom RA, Davis JR (1967) The resonant gate transistor. IEEE Trans Electr Dev 14(3):117–133

    Article  Google Scholar 

  • Nguyen CTC (1995) Micromechanical resonators for oscillators and filters. In: Proceedings of the IEEE International Ultrasonics Symposium, Seattle, pp 489–499

  • Nguyen CTC (2007) MEMS technology for timing and frequency control. IEEE Trans Ultrason Ferroelectr Freq Control 54:251–270

    Article  Google Scholar 

  • Nguyen CTC (2009) Mechanical radio. IEEE Spectrum 46(12):30–35

    Article  Google Scholar 

  • Nguyen CTC, Howe RT (1993) CMOS micromechanical resonator oscillator. In: Technical Digest of IEEE International Electron Devices Meeting, Washington, DC, pp 199–202

  • Partridge A, Lutz M, Kim B, Hopcroft M, Candler RN, Kenny TW, Petersen K, Esashi M (2005) MEMS resonators: getting the packaging right. In: Proceedings of the 9th SEMI Microsystem/MEMS Seminar (SEMICON), Makuhari, Japan, pp 55–58

  • Pomarico A, Morea A, Flora P, Roselli G, Lasalandra E (2010) Vertical MEMS resonators for real-time clock applications. J Sensors 2010:362439

    Google Scholar 

  • Pourkamali S (2004) Electrically coupled MEMS bandpass filters. M.S. thesis, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta

  • Pourkamali S, Ayazi F (2005) Electrically coupled MEMS bandpass filters Part I: With coupling element. Sens Actuators A 122:307–316

    Article  Google Scholar 

  • Pourkamali S, Hashimura A, Abdolvand R, Ho GK, Erbil A, Ayazi F (2003) High-Q single crystal silicon HARPSS capacitive beam resonators with self-aligned sub-100-nm transduction gaps. J Microelectromech Syst 12(4):487–496

    Article  Google Scholar 

  • Pourkamali S, Hao Z, Ayazi F (2004) VHF single crystal silicon capacitive elliptic bulk-mode disk resonators—part II: implementation and characterization. J Microelectromech Syst 13(6):1054–1062

    Article  Google Scholar 

  • Quevy EP, San Paulo A, Basol E, Howe RT, King TJ, Bokor J (2006) Back-end-of-line poly-SiGe disk resonators. In: Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, pp 234–237

  • Roessig T, Howe RT, Pisano AP (1997) Nonlinear mixing in surface-micromachined tuning fork oscillators. In: Proceedings of the 1997 IEEE Frequency Control Symposium, Orlando, FL pp 778–782

  • Roessig TA, Howe RT, Pisano AP, Smith JH (1998) Surface-micromachined 1 MHz oscillator with low-noise Pierce configuration. In: Technical Digest of Solid State Sensors and Actuators Workshop, Cleveland, OH, pp 328–332

  • Schmidt MA, Howe RT (2008) Silicon resonant microsensors. In: Proceedings of Ceramic Engineering and Science, chapter 3, Wiley, New York, pp 1019–1034

  • Stephanou PJ, Pisano AP (2006) GHz contour extensional mode aluminum nitride MEMS resonators. In: Proceedings of the 2006 IEEE Ultrasonics Symposium, Berkeley, pp 2401–2404

  • Sundaresan K, Ho GK, Pourkamali S, Ayazi F (2005) A two-chip, 4-MHz, microelectromechanical reference oscillator. In: Proceeding of the 2005 IEEE International Symposium on Circuits and Systems, Kobe, Japan, vol 6, pp 5461–5464

  • Sworowski M, Neuilly F, Legrand B, Summanwar A, Lallemand F, Philippe P, Buchaillot L (2009) High-Q and low-Rm 24-MHz radial-contour mode disk resonators fabricated with silicon passive integration technology. In: Proceedings of the 15th IEEE International Conference on Solid-State Sensors, Actuators Microsyst (TRANSDUCERS), Denver, pp 2114–2117

  • Sze SM (2003) VLSI technology, 2nd edn. Tata McGraw Hill, New Delhi

    Google Scholar 

  • Tabatabaei S, Partridge A (2010) Silicon MEMS oscillators for high-speed digital systems. IEEE Micro 30(2):80–89

    Article  Google Scholar 

  • Takeuchi H, Quevy E, Bhave SA, King TJ, Howe RT (2004) Ge-blade damascene process for post-CMOS integration of nano-mechanical resonators. IEEE Electron Dev Lett 25:529–531

    Article  Google Scholar 

  • Tang WC, Nguyen TCH, Howe RT (1989) Laterally driven polysilicon resonant microstructures. In: Proceedings of IEEE Micro Electro Mechanical Systems, Salt Lake City, UT, Feb 1989, pp 53–59

  • Taylor JT, Huang Q (1997) CRC Handbook of Electrical Filters. CRC Press, Boca Raton

    Google Scholar 

  • Tilmans HAC (1996) Equivalent circuit representation of electromechanical transducers: I, Lumped-parameter systems. J Micromech Microeng 6:157–176

    Article  Google Scholar 

  • Tilmans HAC, Raedt WD, Beyne E (2003) MEMS for wireless communications: ‘from RF-MEMS components to RF-MEMS-SiP’. J Micromech Microeng 13:S139–S163

    Article  Google Scholar 

  • Tummala RR, Swaminathan M (2008) Introduction to system-on-package (SOP): miniaturization of the entire system. McGraw-Hill Professional, New York

    Google Scholar 

  • Vittoz EA, Degrauwe MGR, Bitz S (1988) High-performance crystal oscillator circuits: theory and application. IEEE J Solid-State Cir 23:774–783

    Article  Google Scholar 

  • Wang K, Nguyen CTC (1999) High-order medium frequency micromechanical electronic filters. J Microelectromech Syst 8(4):534–557

    Article  Google Scholar 

  • Wang K, Wong AC, Nguyen CTC (2000) VHF free–free beam high-Q micromechanical resonators. J Microelectromech Syst 9(3):347–360

    Article  Google Scholar 

  • Wang J, Ren Z, Nguyen CTC (2004a) 1.156-GHz self-aligned vibrating micromechanical disk resonator. IEEE Trans Ultrason Ferroelectr Freq Control 51:1607–1628

    Article  Google Scholar 

  • Wang J, Butler JE, Feygelson T, Nguyen CTC (2004b) 1.51-GHz Nanocrystalline diamond micromechanical disk resonator with material-mismatched isolating support. In: Proceedings of 17th IEEE International Conference on Micro Electro Mechanical Systems, Maastricht, The Netherlands, pp 641–644

  • Wong AC, Nguyen CTC (2004) Micromechanical mixer-filters (“Mixlers”). J Microelectromech Syst 13:100–112

    Article  Google Scholar 

  • Wong TSA, Palaniapan M (2009) Micromechanical oscillator circuits: theory and analysis. Analog Integr Circ Sig Process 59:21–30

    Article  Google Scholar 

  • Wong AC, Clark JR, Nguyen CTC (1999) Anneal-activated, tunable, 65 MHz micromechanical filters. In: Digest of Technical Papers of 10th International Conference on Solid-State Sensors and Actuators, Sendai, pp 1390–1393

  • Yole (2010) Emerging MEMS: Technologies & Markets, 2010 Report. Yole Développement, France

  • Zuo C, Van der Spiegel J, Piazza G (2010) 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour-mode MEMS resonators. IEEE Trans Ultrason Ferroelectr Freq Control 57:82–87

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their deep gratitude to National Programme on Micro and Smart Systems (NPMASS), Govt. of India for extending the infrastructure of MEMS Design Laboratory at Indian Institute of Technology Kharagpur; and thank the anonymous reviewers of this journal for their valuable comments and suggestions on the improvement of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Basu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, J., Bhattacharyya, T.K. Microelectromechanical resonators for radio frequency communication applications. Microsyst Technol 17, 1557 (2011). https://doi.org/10.1007/s00542-011-1332-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00542-011-1332-9

Keywords

Navigation