Skip to main content
Log in

A voltage source model on thermoelectric power sensor based on MEMS technology

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In order to achieve monolithic integration of thermoelectric power sensor and its amplification system and improve the measurement accuracy of microwave power, a voltage source model is researched in this paper. And the thermoelectric power sensor is designed and fabricated using MEMS technology and GaAs MMIC process. It is measured in the X-band (8–12 GHz) with the input power in 100 mW range. When the input microwave power is at 10, 50 and 100 mW, respectively, the frequency dependent coefficient k1 is −0.073, −0.39 and −0.82 mV/GHz, respectively. The sensitivity coefficient k2 is 0.311, 0.303, 0.293, 0.284 and 0.279 mV/mW at 8, 9, 10, 11 and 12 GHz, respectively, and has an excellent linearity. Based on the voltage source model, the feedback coefficient of its amplification system is set to 0.0078 × Pin to compensate the loss power caused by frequency dependent characteristic. In addition to miniaturization and low cost, an advantage using this model is significantly improved measurement accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexander L (2005) A numerical simulation tool for infrared thermopile detectors. Conf Proc Thermoelectr 476–479

  • Chramiec J, Adamski ME, Kitlihski M (2000) Evaluation of chip resistor CAD models used in microwave circuit design programs. In: Conf Proc Signals and Electronic Systems ZCSES’2000, pp 369–372

  • Dehe A, Krozer V, Fricke K, Klingbeil H, Beilenhoff K, Hartnagel HL (1995) Integrated microwave power sensor. Electron Lett 31(25):2187–2188

    Article  Google Scholar 

  • Dehe A, Krozer V, Chen B, Hartnagel HL (1996a) High-sensitivity microwave power sensor for GaAs-MMIC implementation. IEEE Electron Lett 32(23):2149–2150

    Article  Google Scholar 

  • Dehe A, Klingbeil H, Krozer V, Fricke K, Beilenhoff K, Hartnagel HL (1996b) GaAs monolithic integrated microwave power sensor in coplanar waveguide technology. IEEE MTT-S Digest 1:161–164

    Google Scholar 

  • Deominik J, Henry B, David M (1992) Thermoelectric AC power sensor by CMOS technology. IEEE Electron Device Lett 13(7):366–368

    Article  Google Scholar 

  • George EP, Mehran M, Linda PBK (1999) A measurement-based design equation for the attenuation of MMIC-compatible coplanar waveguides. IEEE Trans Microwave Theory Tech 47(2):241–243

    Article  Google Scholar 

  • Haydl WH, Braunstein J, Kitazawa T, Schlechtweg M, Tasker P (1992) Attenuation of millimeter-wave coplanar lines on gallium arsenide and indium phosphide over the range 1–60 GHz. IEEE MTT-S Digest 1:349–352

    Article  Google Scholar 

  • Kodato S, Wakabayashi T, Zhuang Q, Uchida S (1997) New structure for DC-65 GHz thermal power sensor. Conf Proc Solid State Sensors Actuators 2:1279–1282

    Google Scholar 

  • Kozlov AG (2005) High-frequency current distribution in thin-film comb thermal converter. Sensors Actuators A 121:352–363

    Article  Google Scholar 

  • Kunihiko T, Hitoshi S, Barry DI, Manfred K (1999) AC–DC voltage transfer difference due to Seebeck effect in thermal converters. IEEE Trans Instrum Meas 48(2):391–394

    Article  Google Scholar 

  • Lalinsky T, Hascik S, Mozolova Z, Burian E, Drzik M (1999) The improved performance of GaAs micromachined power sensor microsystem. Sensors Actuators A 76:241–246

    Article  Google Scholar 

  • Milanovic V, Gaitan M, Bowen ED, Tea NH, Zaghloul ME (1997) Thermoelectric power sensor for microwave applications by commercial CMOS fabrication. IEEE Electron Lett 18(9):450–453

    Article  Google Scholar 

  • Renu S, Seema V, Rawal DS, Ashok K, Ray UC (2003) RF parameter extraction of MMIC nichrome resistors. Microwave Optical Technol Lett 39(5):409–412

    Article  Google Scholar 

  • Shih KK, Blum JM (1972) Contact resistances of Au–Ge–Ni, Au–Zn and Al to III–V compounds. Solid State Electron 15(11):1177–1180

    Article  Google Scholar 

  • Van herwaarden AW, Sarro PM (1986) Thermal sensors based on the Seebeck effect. Sensors Actuators 10:321–346

    Article  Google Scholar 

  • Wang DB, Xiao XP (2009) A novel symmetrical microwave power sensor based on GaAs monolithic microwave integrated circuit technology. J Micromech Microeng 19:125012

    Google Scholar 

  • Wang DB, Xiao XP (2010) A terminating-type MEMS microwave power sensor and its amplification system. J Micromech Microeng 20:075021

    Google Scholar 

  • Yoshida Y, Nishino TN, Jiao J, Lee SS, Suehiro Y, Miyaguchi K, Fukami T, Kimata M, Ishima O (2004) A grounded coplanar waveguide with a metallized silicon cavity fabricated by front-surface-only processes. Sensor Actuators A 111:129–134

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (61076108, 60976094, 60676043) and the National High Technology Research and Development Program of China (863 Program, 2007AA04Z328).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-ping Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Db., Liao, Xp. A voltage source model on thermoelectric power sensor based on MEMS technology. Microsyst Technol 17, 1343–1349 (2011). https://doi.org/10.1007/s00542-011-1310-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-011-1310-2

Keywords

Navigation