Skip to main content
Log in

Design and optimization of parylene nanomechanical cantilevers with integrated piezoresistors for surface-stress based biochemical sensing

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The sensitivity of surface-stress based cantilever sensor can be significantly increased by using polymer as the cantilever material. In our previous research, parylene nanomechanical cantilevers with integrated poly-crystal silicon piezoresistors have already been developed for biochemical applications. However, parylene cantilevers exhibit different behaviors compared with their more rigid counterparts. In this paper, a new analytical model has been developed and verified using finite element simulations. The design optimization has also been discussed based on the new analytical model, resulting in several useful design guidelines that are unique to parylene or more generally to polymer cantilevers with integrated poly-crystal or single-crystal silicon piezoresistors for surface stress sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ansari MZ, Cho C (2008) Design and analysis of a high sensitive microcantilever biosensor for biomedical applications. In: International conference on biomedical engineering and informatics

  • Barlian AA, Park W-T, Mallon JR Jr, Rastegar AJ, Pruitt BL (2009) Review: semiconductor piezoresistance for microsystems. IEEE 97(3):39

    Article  Google Scholar 

  • Betts TA, Tipple CA, Sepaniak MJ, Datskos PG (2000) Selectivity of chemical sensors based on micro-cantilevers coated with thin polymer films. Anal Chim Acta 422(1):89–99

    Article  Google Scholar 

  • Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P, Meyer E, Güntherodt H-J, Gerber C, Gimzewski JK (2000) Translating biomolecular recognition into nanomechanics. Science 288(5464):316–318. doi:10.1126/science.288.5464.316

    Article  Google Scholar 

  • Grattarola RRM, Butt H-J, Skladal P (2001) Micromechanical cantilever-based biosensors. Sens Actuators B 79:12

    Google Scholar 

  • Hansen KM, Ji H-F, Wu G, Datar R, Cote R, Majumdar A, Thundat T (2001) Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal Chem 73(7):1567–1571. doi:10.1021/ac0012748

    Article  Google Scholar 

  • Hearn EJ (1997) Mechanics of materials

  • Hooge FN (1969) 1/f noise is no surface effect. Phys lett A 139:245–248

    Google Scholar 

  • Katragadda R, Wang Z, Khalid W, Li Y, Xu Y (2007) Parylene cantilevers integrated with polycrystalline silicon piezoresistors for surface stress sensing. Appl Phys Lett 91(083505):3

    Google Scholar 

  • Lang HP, Berger R, Battiston F, Ramseyer JP, Meyer E, Andreoli C, Brugger J, Vettiger P, Despont M, Mezzacasa T, Scandella L, Güntherodt HJ, Gerber C, Gimzewski JK (1998) A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors. Appl Phys A Mater Sci Process 66:S61–S64

    Article  Google Scholar 

  • Länge K, Grimm S, Rapp M (2007) Chemical modification of parylene c coatings for saw biosensors. Sens Actuators B Chem 125(2):441–446. doi:10.1016/j.snb.2007.02.039

    Article  Google Scholar 

  • Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75(7):2229–2253

    Article  Google Scholar 

  • Li G, Burggraf LW, Baker WP (2000) Photothermal spectroscopy using multilayer cantilever for chemical detection. Appl Phys Lett 76(9):1122–1124

    Article  Google Scholar 

  • Mosser V, Suski J, Goss J, Obermeier E (1991) Piezoresistive pressure sensors based on polycrystalline silicon. Sens Actuators A Phys 28(2):113–132. doi:10.1016/0924-4247(91)85020-o

    Article  Google Scholar 

  • Mukhopadhyay R, Lorentzen M, Kjems J, Besenbacher F (2005a) Nanomechanical sensing of DNA sequences using piezoresistive cantilevers. Langmuir 21(18):8400–8408

    Article  Google Scholar 

  • Mukhopadhyay R, Sumbayev VV, Lorentzen M, Kjems J, Andreasen PA, Besenbacher F (2005b) Cantilever sensor for nanomechanical detection of specific protein conformations. Nano Lett 5:4

    Article  Google Scholar 

  • Ono N, Kitamura K, Nakajima K, Shimanuki Y (2000) Measurement of young’s modulus of silicon single crystal at high temperature and its dependency on boron concentration using the flexural vibration method. Jpn J Appl Phys 39:368–371

    Article  Google Scholar 

  • Rasmussen PA, Hansen O, Boisen A (2005) Cantilever surface stress sensors with single-crystalline silicon piezoresistors. Appl Phys Lett 86:203502

    Article  Google Scholar 

  • Rasmussena PA, Thaysenb J, Hansena O, Eriksena SC, Boisen A (2003) Optimised cantilever biosensor with piezoresistive read-out. Ultramicroscopy 97:6

    Google Scholar 

  • Smith DPE (1995) Limits of force microscopy. Rev Sci Instrum 66:5

    Google Scholar 

  • Stoney GG (1909) The tension of metallic films deposited by electrolysis. Proc R Soc Lond A 82:172

    Article  Google Scholar 

  • Timoshenko S, Wolnowsky-Krieger W (1959) Theory of plates and shells. McGraw-Hill, New York

    Google Scholar 

  • Wee KW, Kang GY, Park J, Kang JY, Yoon DS, Park JH, Kim TS (2005) Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing micro-cantilevers. Biosens Bioelectron 20:7

    Article  Google Scholar 

  • Wu G, Ji H, Hansen K, Thundat T, Datar R, Cote R, Hagan MF, Chakraborty AK, Majumdar A (2001) Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc Natl Acad Sci USA 98(4):1560–1564

    Article  Google Scholar 

  • Yang SM, Yin TI (2007) Design and analysis of piezoresistive microcantilever for surface stress measurement in biochemical sensor. Sens Actuators B 120:9

    Article  Google Scholar 

  • Yu XM, Jiang XL, Thaysen J, Hansen O, Boisen A (2001) Noise and sensitivity in polysilicon piezoresistive cantilevers. Chin Phys 10(10):918–923

    Article  Google Scholar 

  • Yu XM, Thaysen J, Hansen O, Boisen A (2002) Optimization of sensitivity and noise in piezoresistive cantilevers. J Appl Phys 92:6

    Google Scholar 

  • Zhang Y, Ren Q, Zhao Y-p (2004) Modelling analysis of surface stress on a rectangular cantilever beam. J Phys D Appl Phys 37:6

    Google Scholar 

  • Zheng K, Khalid W, Wang Z, Li Y, Katragadda RB, Zhao Y, Lin Q, Xu Y (2008) Optical lever based parylene cantilevers for biochemical sensing. Open Opt J 2:8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Q., Xu, Y. Design and optimization of parylene nanomechanical cantilevers with integrated piezoresistors for surface-stress based biochemical sensing. Microsyst Technol 17, 351–359 (2011). https://doi.org/10.1007/s00542-011-1275-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-011-1275-1

Keywords

Navigation