Skip to main content
Log in

Powder injection moulding of metallic and ceramic micro parts

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Industrial use of micro components is determined by the availability of efficient manufacturing techniques. While micro injection moulding of plastic is common practice, metal and ceramic powder injection moulding (PIM) still is under development. High-pressure and low-pressure injection moulding methods complement each other ideally, covering the entire spectrum from prototype to large-scale production. With high-pressure PIM, micro gear wheels with diameters <300 μm can be fabricated using LIGA mould inserts. Densities between 97 and 99% of the theoretical values are achieved. Apart from oxide ceramics, metal materials like copper or powder metallurgical steels like 17-4PH or 316L are often applied. Multi-component injection moulding requires less mounting steps and, hence, offers decisive advantages for effective production of interesting material combinations like electrically conductive/insulating or hard/ductile. Studies relating to the fabrication of immobile as well as mobile shaft-wheel components were performed. Other activities focussed on in-mould labelling with foils containing ultra-fine particles to improve surface quality and detail accuracy. Low-pressure injection moulding allows for the manufacture of small series within 1–4 weeks at low cost. However, the process has features which are not compatible with high-pressure PIM. Although use of a low-viscous feedstock is associated with various benefits, low-pressure injection moulding has not met with acceptance in micro moulding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1, 2
Fig. 3
Figs. 4, 5
Fig. 6
Figs. 7, 8
Figs. 9, 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Bauer W, Knitter R (2002) Development of a rapid prototyping process chain for the production of ceramic microcomponents. J Mat Sci 37:3127–3140

    Article  Google Scholar 

  • Bauer W, Hausselt J, Merz L, Müller M, Oerlygsson G, Rath S (2005) Microceramic injection molding. In: Baltes H, Brand O, Fedder GK, Hierold C, Korvink J, Tabata O, Microengineering of metals and ceramics, Wiley-VCH, pp 325–356

  • Bauer W, Knitter R, Mueller M, Ritzhaupt-Kleissl HJ (2006) Prototype manufacturing of ceramic microparts. Cfi/Ber. DKG 83(13):65–69

    Google Scholar 

  • Bauer W, Müller M, Knitter R, Börsting P, Albers A, Deuchert M, Schulze V (2010) Design and prototyping of a ceramic micro turbine: a case study. Microsyst Technol 16:607–615

    Article  Google Scholar 

  • Baumann A, Brieseck M, Hoehn S, Moritz T, Lenk R (2008) Development in multi-component powder injection moulding of steel-ceramic compounds using green tapes for inmould label process. Powder Inject Mould Int 2(1):55–58

    Google Scholar 

  • Beck M, Piotter V, Ruprecht R, Hausselt J (2006) Dimensional tolerances of micro precision parts made by ceramic injection moulding. In: Dimov S (ed), 4 M 2006: Proceedings of the 2nd international conference on multi-material micro manufacture, Grenoble, Elsevier, pp 135–38

  • Becker EW, Ehrfeld W, Hagmann P, Maner A, Muenchmeyer D (1986) Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process). Electr Eng 4(1):35–56

    Google Scholar 

  • Cetinel FA, Bauer W, Mueller M, Knitter R, Hausselt J (2010) Influence of dispersant, storage time and temperature on the rheological properties of zirconia–paraffin feedstocks for LPIM. J Eu Ceram Soc 30:1391–1400

    Article  Google Scholar 

  • Garino TJ, Morales AM, Boyce BL (2004) The mechanical properties, dimensional tolerance and microstructural characterization of micro-molded ceramic and metal components. J Microsyst Technol 10:506–509

    Google Scholar 

  • German RM (2008) Divergences in global powder injection moulding. Powder Inject Mould Int 2(1):45–49

    Google Scholar 

  • German R (2009) Medical and dental applications for microminiature powder injection moulding–a roadmap for growth. Powder Inject Mould Int 3(2):21–29

    Google Scholar 

  • German RM (2010) Materials for microminiature powder injection moulded medical and dental devices. Int J Powder Metall 46(2):15–18

    MathSciNet  Google Scholar 

  • Haack J, Imgrund P, Hein S, Friederici V, Salk N (2010) The processing of biomaterials for implant applications by powder injection moulding. Int J Powder Metall 4(2):49–52

    Google Scholar 

  • Heldele R (2008) Entwicklung und Charakterisierung von Formmassen für das Mi-kropulverspritzgießen. Ph.D. thesis at the Faculty for Applied Sciences of Freiburg University, pp 162–168

  • Heldele R, Rath S, Merz L, Butzbach R, Hagelstein M, Haussßelt J (2006) X-ray tomography of powder injection moulded micro parts using synchrotron radiation. Nucl Instrum Meth Phys Res B 246:211–216

    Article  Google Scholar 

  • Hook A, Silver L (1942) Premelting anomalies of some long chain normal paraffin hydrocarbons. J Chem Phys 10:686–690

    Article  Google Scholar 

  • Kauzlaric D, Greiner A, Korvink JG, Schulz M, Heldele R (2005) Modeling micro PIM, Part I, Microengineering of metals and ceramics, Weinheim, Advanced micro and nanosystems, vol 3, Wiley-VCH, pp 51–84

  • Lehto M, Bodén R, Simu U, Hjort K, Thornell G, Schweitz JA (2008) A polymeric paraffin microactuator. J MicroelectroMech Ssy 17(5):1172–1177

    Article  Google Scholar 

  • Maetzig M, Walcher H (2006) Assembly moulding of MIM materials. Proc. Euro PM 2006, Ghent–European Powder Metallurgy Association, pp 43–48

  • Menz W, Bacher W, Harmening M, Michel A (1991) The LIGA technique––a novel concept for microstructures and the combination with Si-technologies by injection molding. Proceedings of MEMS '91–Micro Electro Mechanical Systems, Nara, Japan, IEEE New York [u.a.], pp 69–73

  • Michaeli W, Opfermann D (2005) Micro assembly injection moulding––Potential application in medical science. In: Proceedings of 4 M 2005 Conference, ISBN 0-080-44879-8, Elsevier, pp 79–82

  • Moritz T (2008) Two-component CIM parts for the automotive and railway sectors. Powder Inject Mould Int 2(4):38–39

    Google Scholar 

  • Moritz T, Lenk R (2009) Ceramic injection moulding: a review of developments in production technology, materials and applications. Powder Inject Mould Int 3(3):23–34

    Google Scholar 

  • Mueller M, Bauer W, Ritzhaupt-Kleissl HJ (2006) Defect levelling during debinding for improved mechanical properties of ceramic micro parts. T. Chartier (ed) 3rd International conference on shaping of advanced ceramics (Shaping 3), Limoges, May 10–12, pp 59–64

  • Mueller M, Roegner J, Okolo B, Bauer W, Ritzhaupt-Kleissl HJ (2007) Factors influencing the mechanical properties of moulded zirconia micro parts. Proceedings of 10th international conference and exhibition of the European ceramic society, Berlin, pp 1291–1296

  • Mueller T, Piotter V, Plewa K, Prokop J, Ritzhaupt-Kleissl HJ, Hausselt J (2009) Complex shaped micro components produced by powder injection molding. Proceedings of 5th 4 M Conference 2009, Karlsruhe, pp 429–432

  • Nishijabu K, Andrews I, Tanaka S (2008) Accuracy evaluation of ultra-compact gears manufactured by the micro MIM process. Powder Inject Mould Int 2(4):60–63

    Google Scholar 

  • Odom TW, Love JC, Wolfe DB, Paul KE, Whitesides GM (2002) Improved pattern transfer in soft lithography using composite stamps. Langmuir 18:5314–5320

    Article  Google Scholar 

  • Oerlygsson G, Piotter V, Finnah G, Ruprecht R, Haußelt J (2003) Two-component ceramic parts by micro powder injection moulding. Proceedings of the Euro PM 2003, Valencia, Spanien, pp 149–154

  • Okubo K, Tanaka S, Ito H (2009) Molding technology for improvement on dimensional accuracy in micro metal injection molding. J Microsyst Technol 15:887–892

    Article  Google Scholar 

  • Petitjean D, Schmitt JF, Fiorani JM, Laine V, Bouroukba M, Dirand M, Cunat C (2006) Some temperature-sensitive properties of pure linear alkanes and n-ary mixtures. Fuel 85:1323–1328

    Article  Google Scholar 

  • Petzoldt F (2008) Micro powder injection moulding––challenges and opportunities. Powder Inject Mould Int 2(1):37–42

    Google Scholar 

  • Petzoldt F (2009) Fraunhofer IFAM: a commitment to industry oriented research helps drive MIM product development. Powder Inject Mould Int 3(3):51–56

    Google Scholar 

  • Petzoldt F (2010) Multifunctional parts by two-component powder injection moulding (2C-PIM). Powder Inject Mould Int 4(1):21–27

    Google Scholar 

  • Piotter V, Hanemann T, Ruprecht R, Haußelt J (1997) Injection molding and related techniques for fabrication of microstructures. J Microsyst Technol 3:129–133

    Article  Google Scholar 

  • Piotter V, Beck M, Ritzhaupt-Kleissl HJ, Ruh A, Hausselt J (2008a) Recent developments in micro ceramic injection molding. Int J Mater Res 99:1157–1162

    Google Scholar 

  • Piotter V, Bauer W, Hanemann T, Heckele M, Mueller C (2008b) Replication technologies for HARM devices––Status and perspectives. J Microsyst Technol 14(9–11):1599–1605

    Article  Google Scholar 

  • Piotter V, Hanemann T, Heldele R, Mueller M, Mueller T, Plewa K, Ruh A (2010) Metal and ceramic parts fabricated by microminiature powder injection molding. Int J Powder Metall 46(2):21–28

    Google Scholar 

  • Press release (2008) EPMA award entries highlight diversity of powder injection moulding in Europe. Powder Inject Mould Int 2(4):28–29

    Google Scholar 

  • Ruh A, Hanemann T, Heldele R, Piotter V, Ritzhaupt-Kleissl HJ, Hausselt, J (2009a) Development of two-component micropowder injection molding (2C-MicroPIM): characteristics of applicable materials. Int J Appl Ceram Technol. doi:10.1111/j.1744-7402.2009.02427.x

  • Ruh A, Dieckmann AM, Heldele R, Piotter V, Ruprecht R, Munzinger C, Fleischer J, Hausselt J (2008) Production of two-material micro assemblies by two-component powder injection molding and sinter-joining. J Microsyst Technol 14:1805–1811

    Google Scholar 

  • Ruh A, Piotter V, Plewa K, Ritzhaupt-Kleissl HJ, Hausselt J (2009b) Development of two-component micropowder injection molding (2C-MicroPIM)––Process development. Int J Appl Ceram Technol. doi:10.1111/j.1744-7402.2009.02468.x

  • Schmidt H, Rota AC, Imgrund P, Leers M (2009) Micro metal injection moulding for thermal management applications using ultrafine powders. Powder Inject Mould Int 3(2):54–58

    Google Scholar 

  • Schroeder MJ, Roland CM (2002) Segmental relaxation in end-linked poly(dimethylsiloxane) networks. Macromolecules 35:2676–2681

    Article  Google Scholar 

  • Shoemaker J (2006) Moldflow design guide: a resource for plastic engineers. Carl Hanser Verlag, ISBN-13: 978-1-56990-403-9: 61–70

  • Simchi A, Petzoldt F (2010) Cosintering of powder injection molding parts made from ultrafine WC-Co and 316L stainless steel powders for fabrication of novel composite structures. Metall Mater Trans A 41a:233–241

    Article  Google Scholar 

  • Tay B, Loh NH, Tor SB, Ng Fl, Fu G, Lu XH (2009) Characterisation of micro gears produced by micro powder injection moulding. Powder Technol 188:179–182

    Article  Google Scholar 

  • Thomas P, Levenfeld B, Varez A, Cervera A (2009) Production of microparts by powder injection molding. Int J Appl Ceram Technol. doi:10.111/j.1744-7402.2009.02471.x

  • Tong J, Yin H, Qu X (2010) Factors affecting the replication quality of micro metal gears produced by μ-PIM. J Microsyst Technol 16:391–397

    Article  Google Scholar 

  • Wang J, Liu G, Xiong Y, Huang X, Guo Y, Tian Y (2008) Fabrication of ceramic microcomponents and microreactor for the steam reforming of ethanol. Microsyst Technol 14:1245–1249

    Article  Google Scholar 

  • Williams N (2008) Taisei Kogyo Co., Ltd.–Pushing the boundaries of commercial MIM production. Powder Inject Mould Int 2(2):41–44

    Google Scholar 

  • Yin H, Qu X, Jia C (2008) Fabrication of micro gear wheels by micropowder injection molding. J Univ Sci Technol Beijing 15(4):480–483

    Google Scholar 

  • Yu PC, Li QF, Fuh JYH, Li T, Ho PW (2009) Micro injection molding of micro gear using nano-sized zirconia powder. J Microsyst Technol 15:401–406

    Article  Google Scholar 

  • Zeep B, Rath S, Ihli T, Piotter V, Ruprecht R, Hausselt (2005) Powder injection moulding of tungsten components for a He-cooled divertor. Proceedings of 16th international Plansee-seminar, pp 98–109

  • Zhang SX, Ong ZY, Li T, Li QF, Ng FL (2010) Feasibility study on producing components with embedded channel by powder injection moulding. Key Eng Mater 447–448:401–405

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Piotter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piotter, V., Bauer, W., Knitter, R. et al. Powder injection moulding of metallic and ceramic micro parts. Microsyst Technol 17, 251–263 (2011). https://doi.org/10.1007/s00542-011-1274-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-011-1274-2

Keywords

Navigation