Skip to main content
Log in

A MEMS nano-extensometer with integrated de-amplification mechanism

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Experimental exploration of strained nanostructures, such as nanowires and bio-molecules, is essential for understanding their properties. However, the ability to apply and to quantify nanometer displacements is challenging. We present a novel MEMS nano-extensometer with integrated actuation and compliant de-amplification mechanism allowing the accurate characterization of stretched nanostructures. A feasibility study was followed by fabrication and characterization of the device. The de-amplified displacement was registered via optical microscopy and was processed using an improved digital image correlation algorithm to achieve nanometer measurement accuracy. Using our technique, nanoscale displacement can be determined by means of simple imaging tools. This was demonstrated by stretching suspended single wall carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Banks-Sills L, Shklovsky J, Krylov S, Bruck HA, Fourman V, Eliasi R, Ashkenazi D (2010) A methodology for accurately measuring mechanical properties on the micro-scale. Strain. doi:10.1111/j.1475-1305.2009.00692.x

  • Bing P, Hui-min X, Bo-qin X, Fu-long D (2006) Performance of sub-pixel registration algorithms in digital image correlation. Meas Sci Technol 17:1615–1621

    Article  Google Scholar 

  • Bing P, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20:article number 062001

    Google Scholar 

  • Cao J, Wang Q, Dai H (2003) Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys Rev Lett 90:article number 157601

    Google Scholar 

  • Espinosa HD, Zhu Y, Moldovan N (2007) Design and operation of MEMS-based material testing system for nanomechanical characterization. J Microelectromech Syst 16:1219–1231

    Article  Google Scholar 

  • Franklin RN, Wang Q, Thomas TW, Javey A, Shim M, Dai H (2002) Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems. Appl Phys Lett 81:913–915

    Article  Google Scholar 

  • Gaspar J, Held J, Pedrini G, Osten W, Paul O (2009) Development of calibration standards for the optical measurement of in-plane displacements of micromechanical components. In: Proceedings of 22nd international conference of micro electro mechanical systems, Sorrento, Italy

  • Hung PC, Voloshin AS (2003) In-plane strain measurement by digital image correlation. J Braz Soc Mech Sci Eng 25:215–221

    Google Scholar 

  • Isamoto K, Kato K, Morosawa A, Chong C, Fujita H (2004) A 5V operated MEMS variable optical attenuator by SOI bulk micromachining. IEEE J Sel Top Quantum Electron 10(3):570–578

    Article  Google Scholar 

  • Jonnalogadda KN, Chasiotic I, Yagnamurthy S, Lambros J, Pulskamp J, Polcawich R, Dubey M (2010) Experimental investigation of strain rate dependence of nanocrystalline Pt films. Exp Mech 50:25–35

    Article  Google Scholar 

  • Jungen A, Durrer L, Stampfer C, Hierold C (2007a) Nanoscale straining of individual carbon nanotubes by micromachined transducers. In: 14th international conference on solid-state sensors, actuators and microsystems, Lyon, France

  • Jungen A, Durrer L, Stampfer C, Roman C, Heirold C (2007) Progress in carbon nanotube based nanoelectromechanical systems synthesis. Physica Status Solidi (b) 244:4323–4326

    Article  Google Scholar 

  • Karp G A, Ya’akobovitz A, David-Pur M, Ioffe Z, Cheshnovsky O, Krylov S, Hanein Y (2009) Integration of suspended carbon nanotubes into micro-fabricated devices. J Micromech Microeng 19:article number 085021

    Google Scholar 

  • Kawano T, Christensen D, Chen S, Cho CY, Lin L (2006) Formation and characterization of silicon/carbon nanotube/silicon heterojunction by local synthesis and assembly. Appl Phys Lett 89:article number 163510

    Google Scholar 

  • Krylov S, Bernstein Y (2006) Large displacement parallel plate electrostatic actuator with saturation type characteristics. Sens Actuators A 130–131:497–512

    Google Scholar 

  • Krylov S, Ilic BR, Schreiber D, Seretensky S, Craighead H (2008) The pull-in behavior of electrostatically actuated bistable microstructure. J Micromech Microeng 18:article number 055026

    Google Scholar 

  • Liu X, Tong J, Sun Y (2007) A millimeter-sized nanomanipulator with sub-nanometer positioning resolution and large force output. Smart Mater Struct 16:1742–1750

    Article  Google Scholar 

  • Lu S, Dikin DA, Zhang S, Fisher FT, Lee J, Ruoff RS (2003) Realization of nanoscale resolution with micromachined thermally actuated testing stage. Rev Sci Instrum 75:2154–2162

    Article  Google Scholar 

  • Lu S, Guo Z, Ding W, Dikin DA, Lee J, Ruoff RS (2006) In situ mechanical testing of templated carbon nanotubes. Rev Sci Instrum 77:article number 125101

    Google Scholar 

  • Lu S, Guo Z, Ding W, Ruoff RS (2006) Analysis of a microelectromechanical system testing stage for tensile loading of nanostructures. Rev Sci Instrum 77:article nubmer 056103

    Google Scholar 

  • Minot ED, Yaish Y, Sazonova V, Park JY, Brink M, McEuen PL (2003) Tuning carbon nanotube band gaps with strain. Phys Rev Lett 90:article number 156401

    Google Scholar 

  • Naraghi M, Chasiotis I, Kahn H, Wen Y, Dzenis Y (2007) Novel method for mechanical characterization of polymeric nanofibers. Rev Sci Instrum 78:article number 085108

    Google Scholar 

  • Ozkan T, Naraghi M, Chasiotis I (2010) Mechanical properties of vapor grown carbon nanofibers. Carbon 48:239–244

    Article  Google Scholar 

  • Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stöckli T, Burnham NA, Forró L (1999) Elastic and shear moduli of single-walled carbon nanotube ropes. Phys Rev Lett 82:944–947

    Article  Google Scholar 

  • Samuel BA, Desai AV, Haque MA (2006) Design and modeling of MEMS-pico Newton loading/sensing device. Sens Actuators A 127:155–162

    Article  Google Scholar 

  • Seidel GD, Lagoudas DC (2006) Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mech Mater 38:884–907

    Article  Google Scholar 

  • Stampfer C, Jungen A, Linderman R, Obergfell D, Roth S, Hierold C (2006) Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. Nano Lett 6:1449–1453

    Article  Google Scholar 

  • Sutton MA, Li N, Garcia D, Cornille N, Orteu JJ, McNeill SR, Schreier HW, Li X (2006) Metrology in a scanning electron microscope: theoretical developments and experimental validation. Meas Sci Technol 17:2613–2622

    Article  Google Scholar 

  • Volkov SN, Solov’yov AV (2009) The mechanism of DNA mechanical unzipping. Eur Phys J D 54:657–666

    Article  Google Scholar 

  • Xiong Q, Duarte N, Tadigadapa S, Eklund PC (2006) Force-deflection spectroscopy: a new method to determine the Young’s modulus of nanofilaments. Nano Lett 6:1904–1909

    Article  Google Scholar 

  • Ya’akobovitz A, Krylov S (2009) Towards sensitivity enhancement of MEMS accelerometers using mechanical amplification mechanism. IEEE Sens J 10:1311–1319

    Article  Google Scholar 

  • Ya’akobovitz A, Krylov S, Hanein Y (2010) Nanoscale displacement measurement of electrostatically actuated micro-devices using optical microscopy and digital image correlation. Sens Actuators A 162:1–7

    Article  Google Scholar 

  • Ya’akobovitz A, Krylov S, Shacham-Diamand Y (2008) Large angle SOI tilting actuator with integrated motion transformer and amplifier. Sens Actuators A 148:422–436

    Article  Google Scholar 

  • Zhu Y, Barthelat F, Labossiere PE, Moldovan N, Espinosa HD (2003) Nanoscale displacement and strain measurement. In: Proceedings of the SEM annual conference and exposition on experimental and applied mechanics, Charlotte, USA

Download references

Acknowledgments

The authors thank Jenny Shklovsky for her useful advices and to Dr. Lior Kogut for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya’akobovitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ya’akobovitz, A., Krylov, S. & Hanein, Y. A MEMS nano-extensometer with integrated de-amplification mechanism. Microsyst Technol 17, 337–345 (2011). https://doi.org/10.1007/s00542-011-1260-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-011-1260-8

Keywords

Navigation