Skip to main content
Log in

Robust control design for precision positioning of a generic piezoelectric system with consideration of microscopic hysteresis effects

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This study performs precision positioning of a generic piezoelectric structure against hysteresis effects by finite elements, microscopic hysteresis cancellation and robust H compensation. The designed control algorithm is expected to be effective in enhancing servo performance of hard disk drives. The precision positioning is accomplished by adding a polarization term into the linear constitutive equations of piezoelectric materials. This polarization term is then described by the well-known Preisach model. Applying basic principles of finite elements and Hamilton’s thoery, the macroscopic governing equations of an arbitrary piezoelectric system in finite elements are obtained. Based on the macro-model, a controller consisting of two parts is designed to perform the precision positioning of a generic piezo-structure. The first part is responsible for direct hysteresis cancellation at the microscopic level, while the second one is a robust H controller to overcome inevitable cancellation errors. In this way, the control effort is then more effective than the conventional PI and double-lead controller without microscopic hysteresis cancellation. A simple piezoelectric structure of a bender-bimorph cantilever beam is considered for designs and experimental validation. Based on experimental results, the proposed control design is found effective to suppress hysteresis effects as opposed to conventional controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • American Piezo Ceramics, Inc. Standard stripe actuator product specifications Mackeyville, Pennsylvania 17750-0180m, USA

  • Andronikou A, Bekeym A, Hadaegh FY (1983) Identification of nonlinear systems with hysteretic elements. J Dyn Sys Meas Control 105(4):209–214

    Article  MATH  Google Scholar 

  • Ben Mrad R, Hu H (2002) A model for voltage-to-displacement dynamics in piezoceramic actuators subject to dynamic-voltage excitations. IEEE Trans Mech 7(4):479–489

    Article  Google Scholar 

  • Chen P, Montgomery S (1980) A macroscopic theory for the existence of the hysteresis and butterfly loops in ferroelectricity. Ferrroelectrics 23:199–207

    Article  Google Scholar 

  • Chen IW, Wang Y (1998) A domain wall model for relaxor ferroelectrics. Ferroelectrics 206:245–263

    Article  Google Scholar 

  • Dong R, Tan Y (2009) A modified Prandtl–Ishlinskii modeling method for hysteresis. Phys B 404:1336–1342

    Article  Google Scholar 

  • Freeman AR, Joshi SP (1995) Numerical modeling of PZT nonlinear electromechnaical behavior. SPIE Proc 2715:602–613

    Article  Google Scholar 

  • Gao P, Swei SM (2000) Active actuation and control of a miniaturized suspension structure in hard-disk drives using a polyvinylidene-fluoride actuator and sensor. Meas Sci Technol 11:89–94

    Article  Google Scholar 

  • Ge P, Jouaneh M (1995) Modeling hysteresis in piezoceramic actuators. Precis Eng 17:211–221

    Google Scholar 

  • Huang X, Nagamune R, Horowitz R (2006) A comparison of multirate robust track-following control synthesis techniques for dual-stage and multisensing servo systems in hard disk drives. IEEE Trans Magn 42(7):932–937

    Google Scholar 

  • Hughes D, Wen JT (1995) Preisach modeling of piezoceramic and shape alloy hysteresis. SPIE Proc 2715:507–528

    Article  Google Scholar 

  • Hutton RS (2009) Modeling the united states unemployment rate with the Preisach model of hysteresis. Virginia Polytechnic Institute and State University 2009, Virginia

  • Janaideh AE, Feng Y, Rakheja S, Su CY, Rabbath CA (2009) Hysteresis compensation for smart actuators using inverse generalized Prandtl–Ishlinskii model. In: Proceedings of 2009 American control conference, St. Louis, MO, USA, June 10–12, 2009, pp 307–312

  • Kim SH, Kim JH, Yang J, Yang H, Park JY, Park YP (2009) Tilt detection and servo control method for the holographic data storage system. Microsyst Technol 15:1695–1700

    Article  Google Scholar 

  • Lee LK (1979) Piezoelectric bimorph optical beam scanners: analysis and construction. Appl Opt 18:454–459

    Article  Google Scholar 

  • Lee GY (2005) Design of autotuning algorithms for the piezoelectric pickups and experimental verification. Master thesis, Chung Yuan University, Chung-Li, Taiwan

  • Li Y, Horowitz R (2002) Design and testing of track-following controllers for dual-stage servo systems with PZT actuated suspensions. Microsyst Technol 8:194–205

    Article  Google Scholar 

  • Li Y, Horowitz R, Evans R (2003) Vibration control of a PZT actuated suspension dual-stage servo system using a PZT sensor. IEEE Trans Magn 39(2):194–205

    Google Scholar 

  • Liu X, Li A, Clegg W, Jenkins DFL, Davey P (2002) Head-disk spacing variation suppression via active flying height control. IEEE Trans Instrum Meas 51(5):897–901

    Article  Google Scholar 

  • Lou Y, Gao P, Qin B, Guo G, Ong EH, Takada A, Okada K (2002) Dual-stage servo with on-slider PZT microactuator for hard disk drives. IEEE Trans Magn 38(5):2183–2185

    Article  Google Scholar 

  • Mayergoyz ID (1991) Mathematical models of hysteresis. Springer, New York

  • Mori K, Munemoto T, Otsuki H, Yamaguchi Y, Akagi K (1991) A dual-stage magnetic disk drive actuator using a piezoelectric device for a high track density. IEEE Trans Magn 27(6):5298–5300

    Article  Google Scholar 

  • Newcomb C, Flinn I (1982) Improving the linearity of piezoelectric ceramic actuators. Elec Let 18:442–444

    Article  Google Scholar 

  • Oboe R, Beghi A, Murari B (1999) Modeling and control of a dual stage actuator hard disk drive with piezoelectric secondary actuator. In: Proceedings of the 1999 IEEE/ASME international conference on advanced intelligent mechatronics, Atlanta, USA, pp 138–143

  • Peng J, Chao C, Tang H (2010) Piezoelectric micro machined ultrasonic transducer based on dome-shaped piezoelectric single layer. Microsyst Technol 16:1771–1775

    Article  Google Scholar 

  • Preisach F (1935) Uber die mognetidche nachwirkung. Z Phys 94:277–302

    Article  Google Scholar 

  • Rao SS (1986) Mechanical vibrations, Addison-Wesley, New York

  • Shaffer JJ, Fried DL (1970) Bender-bimorph scanner analysis. Appl Opt 9:933–937

    Article  Google Scholar 

  • Simkovics R, Landes H, Ka1tenbacher M, Hoffelner J, Lerch R (2000) Finite element analysis of hysteresis effects in piezoelectric transducers. Proc SPIE Int Soc Opt Eng 3984:33–44

    Google Scholar 

  • Suzuki K, Maeda R, Jiaru Chu, Kato T, Kurita M (2003) An active head slider using a piezoelectric cantilever for in situ flying-height control. IEEE Trans Magn 39(2):826–831

    Article  Google Scholar 

  • Tagawa N, Kitamura KI, Mori A (2003) Design and fabrication of MEMS-based active slider using double-layered composite PZT thin film in hard disk drives. IEEE Trans Magn 39(2):926–931

    Article  Google Scholar 

  • Tokuyama M, Toshihiko S, Hiromitsu M, Nakamura S, Hanya M, Osamu I, Soga J (2001) Development of a Φ-shaped actuated suspension for 100-kTPI hard disk drives. IEEE Trans Magn 37(4):1884–1886

    Article  Google Scholar 

  • Tsai KY, Yen JY (1999) Servo system design of a high-resolution piezo-driven fine stage for step-and-repeat microlithography systems. In: Proceedings of IECON (Industrial Electronics Conference), San Jose, CA, USA, pp 11–16

  • Yu Y, Naganathan N, Dukkipati R (2002) Preisach modeling of hysteresis for piezoceramic actuator system. Mech Mach Theory 37(1):49–59

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou K, Doyle JC (1998) Essentials of robust control, Prentice Hall, New Jersey

Download references

Acknowledgments

The authors are indebted to the National Science Council of ROC for the financial support through the contacts NSC 95-2221-E-009-367, NSC 95-2745-E-033-004-URD, and NSC 97-2221-E-009-057-MY3. The authors are also grateful to National Chip Implementation Center (CIC) of Taiwan for help implement the controllers. This work was supported in part by the National Science Council, Taiwan, on Establishing “International Research-Intensive Centers of Excellence in Taiwan” (IRiCE Project) under Contract NSC 99-2911-I-010-101, and in part by the Aiming for the Top University Plan of National Chiao Tung University, the Ministry of Education, Taiwan, under Contract 99W962.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C.-P. Chao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, P.CP., Liao, PY., Tsai, MY. et al. Robust control design for precision positioning of a generic piezoelectric system with consideration of microscopic hysteresis effects. Microsyst Technol 17, 1009–1023 (2011). https://doi.org/10.1007/s00542-011-1250-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-011-1250-x

Keywords

Navigation