Skip to main content
Log in

Study on the replication quality of micro-structures in the injection molding process with dynamical tool tempering systems

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The injection molding of micro-structures is a promising mass-production method for a broad range of materials. However, the replication quality of these structures depends significantly on the heat flow during the filling stage. In this paper, the filling and heat transfer of v-groove and random structures below 5 μm is investigated with the help of an AFM (atomic force microscope) and thermo couples. A numerical model is developed to predict the filling of surface structures during the filling and packing stage. The model implies the use of simple fully developed flow models taking the power-law material model into account. This permits investigation into which ways several processing parameters affect the polymer flow in the surface structures. The mold wall temperature, which has significant effects on the polymer flow, is varied by using a variothermal mold temperature control system to validate the model proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Attia UM, Alcock R (2009) Integration of functionality into polymer-based microfluidic devices produced by high-volume micro-moulding techniques. Int J Adv Manuf Technol. doi:10.1007/s00170-009-2345-8

  • Attia UM, Marson S, Alcock JR (2009) Micro-injection moulding of polymer microfluidic devices. Microfluid Nanofluidics 7:1–28. doi:10.1007/s10404-009-0421-x

    Article  Google Scholar 

  • Baehr HD, Stephan K (2006) Heat and mass transfer. Springer, Berlin

    Google Scholar 

  • Bendada A, Derdouri A, Lamontagne M, Simard Y (2004) Analysis of thermal contact resistance between polymer and mold in injection molding. Appl Therm Eng 24:2029–2040. doi:10.1016/j.applthermaleng.2003.12.027

    Article  Google Scholar 

  • Bigerelle M, Gorp AV, Iost A (2008) Multiscale roughness analysis in injection-molding process. Polym Eng Sci 48:1725–1736. doi:10.1002/pen

    Article  Google Scholar 

  • Bürkle E, Burr A, Müller M, Kübler M (2007) In three-seconds from 100 to 140 degree. Kunstst Int 10:144–148

    Google Scholar 

  • Burmeister F, Kohn C, Kuebler R, Kleer G, Bläsi B, Gombert A (2005) Applications for TiAlN- and TiO2-coatings with nanoscale surface topographies. Surf Coat Technol 200(5–6):1555–1559. doi:10.1016/j.surfcoat.2005.08.062

    Article  Google Scholar 

  • Delaunay D, Le Bot P, Fulchiron R, Luye JF, Regnier G (2000) Nature of contact between polymer and mold in injection molding. Part I: influence of a non-perfect thermal contact. Polym Eng Sci 40(7):1682–1691

    Article  Google Scholar 

  • Despa MS, Kelly KW, Collier JR (1999) Injection molding of polymeric LIGA HARMs. Microsyst Technol 6:60–66

    Article  Google Scholar 

  • Giboz J, Copponnex T, Mélé P (2007) Microinjection molding of thermoplastic polymers: a review. J Micromech Microeng 17:R96–R109. doi:10.1088/0960-1317/17/6/R02

    Article  Google Scholar 

  • Huang CK (2007) Polymeric nanofeatures of 100 nm using injection moulding for replication. J Micromech Microeng 17:1518–1526. doi:10.1088/0960-1317/17/8/014

    Article  Google Scholar 

  • Kim D, Kim J, Park HC, Lee KH, Hwang W (2008) A superhydrophobic dual-scale engineered lotus leaf. J Micromech Microeng 18:015019 (5 pp). doi:10.1088/0960-1317/18/1/015019

    Google Scholar 

  • Lalanne L, Hutley M (2003) Artificial media optical properties-subwavelength scale. Encycl Opt Eng. doi:10.1081/E-EOE-120009537

  • Lee SM, Lee HS, Kim DS, Kwon TH (2006) Fabrication of hydrophobic films replicated from plant leaves in nature. Surf Coat Technol 201:553–559. doi:10.1016/j.surfcoat.2005.12.006

    Article  Google Scholar 

  • Lee Y, Park SH, Kim KB, Lee JK (2007) Fabrication of hierarchical structures on a polymer surface to mimic natural superhydrophobic surfaces. Adv Mater 19:2330–2335. doi:10.1002/adma.200700820

    Article  Google Scholar 

  • Massé H, Arquis É, Delaunay D, Quilliet S, Le Bot PH (2003) Heat transfer with mechanically driven thermal contact resistance at the polymer–mold interface in injection molding of polymers. Int J Heat Mass Transf 47:2015–2027. doi:10.1016/j.ijheatmasstransfer.2002.04.001

    Article  Google Scholar 

  • Mönkkönen K, Hietala J, Pääkkönen P, Pääkkönen EJ, Kaikuranta T, Pakkanen TT, Jääskeläinen T (2002) Replication of sub-micron features using amorphous thermoplastics. Polym Eng Sci 42:1600–1608

    Article  Google Scholar 

  • Mosaddegh P, Angstadt DC (2008) Micron and sub-micron feature replication of amorphous polymers at elevated mold temperature without externally applied pressure. J Micromech Microeng. doi:10.1088/0960-1317/18/3/035036

  • Nosonovsky M, Bhushan B (2008) Biologically inspired surfaces: broadening the scope of roughness. Adv Funct Mater 18:843–855. doi:10.1002/adfm.200701195

    Article  Google Scholar 

  • Osswald T, Hernández-Ortiz JP (2006) Polymer processing—modeling and simulation. Carl Hanser Verlag, Munich

    Google Scholar 

  • Pantani R, Santis FD, Brucato V, Titomanlio G (2004) Analysis of gate freeze-off time in injection molding. Polym Eng Sci 44(1):1–17

    Article  Google Scholar 

  • Pranov H, Rasmussen HK, Larsen NB, Gadegaard N (2006) On the injection molding of nanostructured polymer surfaces. Polym Eng Sci. doi:10.1002/pen.20459

  • Raguin DH, Morris GM (1993) Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles. Appl Opt 32(14):2582–2598. doi:10.1364/AO.32.002582

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77(3):977–1026

    Article  Google Scholar 

  • Xu G, Yu L, Lee LJ, Koelling KW (2005) Experimental and numerical studies of injection molding with microfeatures. Polym Eng Sci. doi:10.1002/pen.20341

  • Yao D, Kim B (2002) Simulation of the filling process in microchannels for polymeric materials. J Micromech Microeng 12:604–610. PII:S0960-1317(02)33062-6

    Google Scholar 

  • Yoo YE, Kim TH, Choi DS, Hyun SM, Lee KH, Kim SK, Kim BH, Seo YH, Lee HG, Lee JS (2009) Injection molding of a nanostructured plate and measurement of its surface properties. Curr Appl Phys 9:e12–e18. doi:10.1016/j.cap.2008.12.023

    Article  Google Scholar 

  • Yoshii M, Kuramoto H, Ochiai Y (1998) Experimental study of the transcription of minute width grooves by injection molding. Polym Eng Sci 38(9):1587–1593

    Article  Google Scholar 

  • Young WB (2005) Simulation of the filling process in molding components with micro channels. Microsyst Technol 11:410–415. doi:10.1007/s00542-004-0474-4

    Article  Google Scholar 

  • Yu L, Lee LJ, Koelling KW (2004) Flow and heat transfer simulation of injection molding with microstructures. Polym Eng Sci 44(10):1866–1876. doi:10.1002/pen.20188

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Kuhn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn, S., Burr, A., Kübler, M. et al. Study on the replication quality of micro-structures in the injection molding process with dynamical tool tempering systems. Microsyst Technol 16, 1787–1801 (2010). https://doi.org/10.1007/s00542-010-1104-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-010-1104-y

Keywords

Navigation