Skip to main content
Log in

Review of atomic MEMS: driving technologies and challenges

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Atomic MEMS technology is an emerging multidisciplinary subject which benefits from different fields, including microfabrication, laser technique and atomic physics, etc. This paper gives an overview of atomic MEMS and discusses the challenges faced in the design and manufacture of atomic MEMS devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexandrov EB, Balabas MV (2002) Light-induced desorption of alkali-metal atoms from paraffin coating. Phys Rev A 66:042903

    Article  Google Scholar 

  • Allred JC, Lyman RN, Kornack TW et al (2002) High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys Rev Lett 89:130801

    Article  Google Scholar 

  • Budker D, Romalis M (2007) Optical magnetometry. Nat Phys 3:227–234

    Article  Google Scholar 

  • Budker D, Kimball DF, Rochester SM et al (2000) Sensitive magnetometry based on nonlinear magneto-optical rotation. Phys Rev A 62:043403

    Article  Google Scholar 

  • Cheng YT, Lin L, Najafi K (2000) Fabrication and hermeticity testing of a glass-silicon package formed using localized aluminum/silicon-to-glass bonding. In: Proc IEEE Conf MicroElectroMech Syst, pp 757–762

  • Cheng Y-T, Hsu W-T, Najafi K et al (2002) Vacuum packaging technology using localized aluminum/silicon-to-glass bonding. J Microelectromech Syst 11:556–566

    Article  Google Scholar 

  • Donley EA, Hodby E, Hollberg L et al (2007) Demonstration of high-performance compact magnetic shields for chip-scale atomic devices. Rev Sci Instrum 78:083102

    Article  Google Scholar 

  • Douahi A, Nieradko L, Beugnot JC et al (2007) New vapor cell technology for chip scale atomic clock. In: Proc IEEE Int Freq Control Symp, pp 58–61

  • Eklund EJ, Shkel AM (2007) Glass blowing on a wafer level. J Microelectromech Syst 16:232–239

    Article  Google Scholar 

  • Eklund EJ, Shkel AM, Knappe S et al (2007) Spherical rubidium vapor cells fabricated by micro glass blowing. In: Proc IEEE 20th Ann Int Conf MicroElectroMech Syst, pp 362–365

  • Eklund EJ, Shkel AM, Knappeb S (2008) Glass-blown spherical microcells for chip-scale atomic devices. Sens Actuators 143:175–180

    Article  Google Scholar 

  • Gong F, Jau YY, Jensen K et al (2006) Electrolytic fabrication of atomic clock cells. Rev Sci Instrum 77:075101

    Article  Google Scholar 

  • Happer W, Tam AC (1977) Effect of rapid spin exchange on the magnetic-resonance spectrum of alkali vapors. Phys Rev A 16:1877–1891

    Article  Google Scholar 

  • Happer W, Tang H (1973) Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors. Phys Rev Lett 31:273–276

    Article  Google Scholar 

  • Hasegawa M, Dziuban P, Nieradko L et al (2008) Fabrication of wall-coated Cs vapor cells for a chip-scale atomic clock. In: Proc IEEE/LEOS Int Conf Optical MEMs Nanophotonics, pp 162–163

  • Hodby E, Donley A, Kitching J (2007) Differential atomic magnetometry based on a diverging laser beam. Appl Phys Lett 91:011109

    Article  Google Scholar 

  • Karaulanov T, Graf MT, English D et al (2009) Controlling atomic vapor density in paraffin-coated cells using light-induced atomic desorption. Phys Rev A 79:012902

    Article  Google Scholar 

  • Kevin Nishikata M, Norihiro Iwai A et al (2005) Wide temperature operation of 850 nm VCSEL and isolator-free operation of 1,300 nm VCSEL for a variety of applications. In: Proc SPIE, pp 8–19

  • Kim J, Chiao M, Lin L (2002) Ultrasonic bonding of in/au and al/al for hermetic sealing of MEMS packaging. In: Proc IEEE Int Conf Micro Electro Mech Syst, pp 415–418

  • Kim H-S, Liao H-H, Song HO et al (2008) Variable thermal resistors (VTR) for thermal management of chip scale atomic clocks (CSAC). In: Proc IEEE Int Conf Micro Electro Mech Syst, pp 852–856

  • Kitching J (2007) Chip-scale atomic devices based on microfabricated alkali vapor cells. In: Proc Int Quantum Electron Conf Lasers Electro-Optics, pp 9–11

  • Kitching J, Knappe S, Hollberg L (2002) Miniature vapor-cell atomic frequency references. Appl Phys Lett 81:553

    Article  Google Scholar 

  • Kitching J, Donley EA, Hodby E et al (2009) United States Patent, US, vol US2009/0039881 A1, p. National Institute of Standards and Technology

  • Knappe S, Shah V, Schwindt PDD, Hollberg L, Kitching J (2004) A microfabricated atomic clock. Appl Phys Lett 85:1460–1462

    Article  Google Scholar 

  • Knappe S, Gerginov V, Schwindt PDD et al (2005) Atomic vapor cells for chip-scale atomic clocks with improved long-term frequency stability. Opt Lett 30:2351–2353

    Article  Google Scholar 

  • Knappe S, Schwindt PDD, Gerginov V et al (2006) Microfabricated atomic clocks and magnetometers. J opt A pure appl opt 8:S318–S322

    Article  Google Scholar 

  • Kominis IK, Kornack TW, Allred JC et al (2003) A subfemtotesla multichannel atomic magnetometer. Nature 422:596–599

    Article  Google Scholar 

  • Kornack TW, Ghosh RK, Romalis MV (2005) Nuclear spin gyroscope based on an atomic comagnetometer. Phys Rev Lett 95:230801

    Article  Google Scholar 

  • Laws AD, Chang YJ, Bright VM et al (2008) Thermal conduction switch for thermal management of chip scale atomic clocks. J Electron Packag 130:021011

    Article  Google Scholar 

  • Ledbetter MP, Savukov IM, Acosta VM et al (2008) Spin-exchange-relaxation-free magnetometry with Cs vapor. Phys Rev A 77:033408

    Article  Google Scholar 

  • Levallois C, Le Corre A, Dehaese O et al (2006) Design and fabrication of GaInAsP/InP VCSEL with two a-Si/a-SiNx Bragg reflectors. Optical Quantum Electron 38:281–291

    Google Scholar 

  • Liew L-A, Knappe S, Moreland J (2004) Microfabricated alkali atom vapor cells. Appl Phys Lett 84:2694–2696

    Article  Google Scholar 

  • Liew L-A, Moreland J, Gerginov V (2007) Water-level filling of microfabricated atomic vapour cells based on thin-film deposition and photolysis of cesium azide. Appl Phys Lett 90:114106

    Google Scholar 

  • Lust LM, Youngner DW (2007) United States patent, US, vol US2007/0266784 A1, p. Honeywell International Inc

  • Lutwak R, Emmons D, English T et al (2003) The chip-scale atomic clock—recent development progress. In: Proc 35th Ann Precise Time Time Interval (PTTI) Syst Appl Meet, pp 467–478

  • Lutwak R, Vlitas P, Varghese M et al (2005) The MAC—a miniature atomic clock. In: Proc IEEE Int Freq Control Symp Exposition, pp 752–755

  • Mariotti E, Atutov S, Meucci M (1994) Dynamics of rubidium light-induced atom desorption (LIAD). Chem Phys 187:111–115

    Article  Google Scholar 

  • Mescher MJ, Lutwakt R, Varghese M (2005) An ultra-low-power physics package for a chip-scale atomic clock. In: Proc 13th Int Conf Solid-state Sens, Actuators Microsyst, pp 311–316

  • Peng C, Li ZB, Xu AS (2007) Optical gyroscope based on a coupled resonator with the all-optical analogous property of electromagnetically induced transparency. Opt Exp 15:3864–3875

    Article  Google Scholar 

  • Perez MA, Kitching J, Shkel AM (2008a) Robust optical design of angled multilayer dielectric mirrors optimized for rubidium vapor cell return reflection. Solid-State Sens Actuators Microsyst Workshop, pp 296–299

  • Perez MA, Nguyen U, Knappe S et al (2008b) Rubidium vapor cellwith integrated nonmetallic multilayer reflectors. In: Proc IEEE Int Conf Micro Electro Mech Syst, pp 790–793

  • Perez MA, Nguyen U, Knappe S et al (2009) Rubidium vapor cell with integrated Bragg reflectors for compact atomic MEMS. Sens Actuators 154:295–303

    Article  Google Scholar 

  • Peter DD Schwindt, Svenja Knappe, Shah Vishal, Hollberg Leo, Kitching John (2004) Chip-scale atomic magnetometer. Appl Phys Lett 85:6409

    Article  Google Scholar 

  • Radhakrishnan S, Lal A (2005) Alkali metal-wax micropackets for chip-scale atomic clocks. In: Proc Int Conf Solid State Sens Actuators Microsyst, pp 23–26

  • Savoulides N, Jacobson SA, Li H et al (2008) Fabrication and testing of a high-speed microscale turbocharger. J Microelectromech Syst 17:11270–11282

    Article  Google Scholar 

  • Savukov IM, Romalis MV (2005) NMR detection with an atomic magnetometer. Phys Rev Lett 94:123001

    Article  Google Scholar 

  • Savukov IM, Seltzer SJ, Romalis MV et al (2005) Tunable atomic magnetometer for detection of radio-frequency magnetic fields. Phys Rev Lett 95:063004

    Article  Google Scholar 

  • Schwindt PDD, Lindseth B, Knappe S et al (2007) Chip-scale atomic magnetometer with improved sensitivity by use of the Mx technique. Appl Phys Lett 90:081102

    Article  Google Scholar 

  • Seltzer SJ (2008) developments in alkali-metal atomic magnetmetry. PhD dissertation of Princeton

  • Seltzer SJ, Rampulla DM, Rivillon-Amy S et al (2008) Testing the effect of surface coatings on alkali atom polarization lifetimes. J Appl Phys

  • Serkland DK, Geiba KM, Peakea GM et al (2007) VCSEL for atomic sensors. In: Proc SPIE, pp 648406

  • Shah V, Knappe S, Schwindt PDD et al (2007) Subpicotesla atomic magnetometry with a microfabricated vapour cell. Nat Photonics 1:649–652

    Article  Google Scholar 

  • Soda H, Iga K, Kitahara C, Suematsu Y (1979) GaInAsP/InP surface emitting injection lasers. Jpn J Appl Phys 18:2329–2330

    Google Scholar 

  • Song X, Dong H, Fang J (2008) Chip-scale atomic magnetometer based on SERF. In: Proc IEEE Int Conf Nano/Micro Eng Mol Syst, pp 231–234

  • Stähler M, Wynands R, Knappe S et al (2002) Coherent population trapping resonances in thermal 85Rb vapor: D1 vs. D2 line excitation. Opt Lett 27:1472–1474

    Article  Google Scholar 

  • Su Y-C, Lin L (2001) Localized plastic bonding for micro assembly, packaging and liquid encapsulation. In: Proc IEEE Int Conf Micro Electro Mech Syst, pp 50–53

  • Tatum J (2007) VCSEL proliferation. Proc SPIE 6484:648403

    Article  Google Scholar 

  • Xia H, Ben A, Baranga A et al (2006) Magnetoencephalography with an atomic magnetometer. Appl Phys Lett 89:211104

    Article  Google Scholar 

  • Youngner DW, Lust LM, Carlson DR et al (2007) A manufacturable chip-scale atomic clock. In: Proc 14th Int Conf Solid-State Sens Actuators Microsyst, pp 39

Download references

Acknowledgments

This work is supported by the grant of Key Programs of National Science Foundation of China under Grant No. 60736025 and Major Programs of China National Space Administration under Grant No. D2120060013. The authors would like to thank Prof. Lei Guo, Prof. Gang Liu, Prof. Wei Sheng, Dr. Ye Hong and all the staffs in the Novel Inertial Instrument and Navigation System Laboratory of BUAA for their support and beneficial discussion about the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, H., Fang, J., Zhou, B. et al. Review of atomic MEMS: driving technologies and challenges. Microsyst Technol 16, 1683–1689 (2010). https://doi.org/10.1007/s00542-010-1089-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-010-1089-6

Keywords

Navigation