Skip to main content
Log in

A comparative analyze of fundamental noise in cantilever sensors based on lateral and longitudinal displacement: case of thermal infrared detectors

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The performance of novel cantilever-based sensors approaches the limit posed by thermo-mechanical fluctuations, which is the currently accepted fundamental detection barrier for micro- and nanomechanical sensors. At the same time, the sensitivity of a high-level measurement techniques used for readout of the cantilever displacement nears the value of 10−14 m/Hz½. However, the thermo-mechanical noise of some cantilever sensors based on bimaterial structures is considerably higher than imposed by the fundamental limit. Moreover, the signal-to-noise ratio of some sensors based on contemporary MEMS technologies falls behind the characteristics of older types of mechanical sensors, fabricated using macroscopic production technologies. To investigate the cause of this situation, we perform a comparative analysis of the performance limits for two classes of cantilever sensors: the bimaterial cantilevers where the output signal is the transversal (lateral) displacement of the cantilever tip and the simple cantilever sensors where the signal is the longitudinal displacement along the cantilever axis. As a starting point of our analysis we established a correspondence between the parameters of a bimaterial cantilever and the simple cantilever. In a general case these two structures are not directly comparable, since the deformation of the bimaterial cantilever depends on 14 variables, while the longitudinal elongation of the simple cantilever depends on seven parameters only. However, under certain conditions analyzed in this paper a partial correspondence between the parameters of these two structures can be established. Our analysis shows that in certain applications a cantilever with longitudinal elongation has potentially better performance than the corresponding bimaterial element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amantea R, Knoedler CM, Pantuso FP, Patel VK, Sauer DJ, Tower JR (1997) An uncooled IR imager with 5 mK NEDT, Proc SPIE 3061 infrared technology and applications. In: Andersen BF, Scholl MS (eds) SPIE, Bellingham, pp 210–222. doi: 10.1117/12.280340

  • Brillouin L (1938) On thermal dependence of elasticity in solids. Phys Rev 54:916–917. doi:10.1103/PhysRev.54.916

    Article  MATH  Google Scholar 

  • Carome EF (1992) Fiber optic sensor with dual condition-responsive beams, U.S. Patent 5140155

  • Costa JL, Nogues J, Rao KV (1995) Direct measurements of magnetostrictive process in amorphous wires using scanning tunneling microscopy. Appl Phys Lett 66:3374–3376. doi:10.1063/1.113762

    Article  Google Scholar 

  • Datskos PG (2000) Micromechanical uncooled photon detectors, Proc. SPIE 3948 photoreceptors: materials and devices V, SPIE, Bellingham, pp 80–93

  • Datskos PG, Lavrik NV, Sepaniak MJ (2004a) Chemical and biological sensors based on microcantilevers. In: Yurich SY, Gomes MTSR (eds) Smart sensors and MEMS. Springer, Dordrecht. doi:10.1007/978-1-4020-2929-5

    Google Scholar 

  • Datskos PG, Rajic S, Lavrik NV, Nickolay V (2004b) Performance of uncooled microcantilever thermal detectors. Rev Sci Instrum 75:1134–1148. doi:10.1063/1.1667257

    Article  Google Scholar 

  • Figielski T (1961) Photostriction effect in germanium. Phys Status Solidi 1:306–316. doi:10.1002/pssb.19610010403

    Article  Google Scholar 

  • Gardner JW, Varadan VK, Awadelkarim OO (2002) Microsensors, MEMS and smart devices. Wiley, Hoboken

    Google Scholar 

  • Gehring GA, Cooke MD, Gregory IS, Karl WJ, Watts R (2000) Cantilever unified theory and optimization for sensors and actuators. Smart Mater Struct 9:918–931. doi:10.1088/0964-1726/9/6/324

    Article  Google Scholar 

  • Gibbs RJ (1992) Magnetostriction: 150 years from the discovery. Phys Scr T45:115–119. doi:10.1088/0031-8949/1992/T45/024

    Article  Google Scholar 

  • Hales JH, Teva J, Boisen A, Davis ZJ (2009) Longitudinal bulk acoustic mass sensor. Appl Phys Lett 95:033506. doi:10.1063/1.3168519

    Article  Google Scholar 

  • Halsor JI (1975) Radiation Infrared detector. US Patent 3 895 309

  • Howison S (2003) Practical Applied Mathematics Modeling, Analysis, Approximation. Oxford University Press, Cambridge, pp 25–51

    Google Scholar 

  • Hunter SR, Mauer G, Jiang L, Simelgor G (2003) High sensitivity uncooled microcantilever infrared imaging arrays, Proc SPIE 6206 infrared technology and applications 32 In: Andresen BF, Fulop GF, Norton PR (eds) SPIE, Bellingham. doi: 10.1117/12.664727

  • Jones RV, Richards JCS (1959) Recording optical lever. J Sci Instrum 36:90–94. doi:10.1088/0950-7671/36/2/312

    Article  Google Scholar 

  • Korvink JG (2006) Material properties: measurement and data. In: Korvink JG, Paul O (eds) MEMS: a practical guide to design, analysis, and applications. William Andrew Publishing/Noyes, Norwich

    Google Scholar 

  • Li M, Pernice WHP, Xiong C, Baehr-Jones T, Hochberg M, Tang HX (2008) Harnessing optical forces in integrated photonic circuits. Nature 456:480–485. doi:10.1038/nature07545

    Article  Google Scholar 

  • Lin Y-H, McConney ME, Le Mieux MC, Peleshanko S, Jiang C, Singamaneni S, Tsukruk VV (2006) Trilayered ceramic–metal–polymer microcantilevers with dramatically enhanced thermal Sensitivity. Adv Mater 18:1157–1161. doi:10.1002/adma.200502232

    Article  Google Scholar 

  • Matovic J (2006) Application of Ni electroplating techniques towards stress-free microelectromechanical system-based sensors and actuators, Proceedings of the institution of mechanical engineers, Part C: J Mech Eng Sci 220:1645–1654

    Google Scholar 

  • Matovic J (2006) A simplified method for analysis of MEMS bimaterial cantilever elements, Proc. 25th international conference on microelectronics MIEL, Belgrade, Serbia, 14–17 May, 1, 241–243, doi:10.1109/ICMEL.2006.1650941

  • Matovic J, Djuric Z (1999) Infrared detector for direct conversion of IR radiation to visible scene, 2nd European Workshop on Microelectronics and Microsystems Education, DTM 99, 31. Mart–1 April, Paris, France

  • Meyer E, Gimzewski JK, Gerber C, Schlittler RR (1995) Micromechanical calorimeter with picojoule-sensitivity. In: Welland ME, Gimzewski JK (eds) Ultimate limits of fabrication and measurement. Kluwer Academic Publishers, Netherlands, pp 89–95

    Google Scholar 

  • Oden PI, Datskos PG, Thundat T, Warmack RJ (1996) Uncooled thermal imaging using a piezoresistive microcantilever. Appl Phys Lett 69:3277–3279. doi:10.1063/1.117309

    Article  Google Scholar 

  • Pang1 W, Yan L, Zhang H, Yu H, Kim ES, Tang WC (2006) Ultrasensitive mass sensor based on lateral extensional mode (LEM) Piezoelectric resonator, Proc. 19th internat conf micro electro mechanical systems MEMS, Istanbul, Turkey, 22–26 Jan 2006, 78–81, doi:10.1109/MEMSYS.2006.1627740

  • Putman CAJ, de Grootha BG, van Hulst NF, Grevea J (1992) A theoretical comparison between interferometric and optical beam deflection technique for the measurement of cantilever displacement in AFM. Ultramicroscopy 42–44:1509–1513. doi:10.1016/0304-3991(92)90474-X

    Article  Google Scholar 

  • Rao SS (2003) Mechanical Vibrations. Prentice Hall, Massachusetts, pp 65–70

    Google Scholar 

  • Sarid D (1994) Scanning force microscopy (with applications to electric, magnetic, and atomic forces). Oxford University Press, Oxford

    Google Scholar 

  • Saulson PR (1990) Thermal noise in mechanical experiments. Phys Rev D 42:2437–2445. doi:10.1103/PhysRevD.42.2437

    Article  Google Scholar 

  • Singamaneni S, LeMieux MC, Lang HP, Gerber C, Lam Y, Zauscher S, Datskos PG, Lavrik NV, Jiang H, Naik RR, Bunning TJ, Tsukruk VV (2008) Bimaterial microcantilevers as a hybrid sensing platform. Adv Mater 20:653–680. doi:10.1002/adma.200701667

    Article  Google Scholar 

  • Timoshenko S (1925) Analysis of bi-metal thermostats. J Opt Soc Am 11:233–233. doi:10.1364/JOSA.11.000233

    Article  Google Scholar 

  • Wachter EA, Thundat T (1995) Micromechanical sensors for chemical and physical measurements. Rev Sci Instrum 66:3662–3667. doi:10.1063/1.1145484

    Article  Google Scholar 

  • Yaralioglua GG, Atalar A (1998) Analysis and design of an interdigital cantilever as a displacement sensor. J Appl Phys 83:7405–7415. doi:10.1063/1.367984

    Article  Google Scholar 

  • Zhang X, Jiao B-B, Chen D-p, Ye T-c (2009) The optimizing designing of bi-material micro cantilever with adhesive layer in between and its application in an uncooled MEMS IR FPA, SPIE Proc 7383 international symposium on photoelectronic detection and imaging 2009: advances in infrared imaging and applications In: Puschell J, Gong H-m, Cai Y, Lu J, Fei J-d (eds). doi: 10.1117/12.836580

  • Zhao Y, Mao M, Horowitz R, Majumdar A, Varesi J, Norton P, Kitching J (2002) Optomechanical uncooled infrared imaging system: design, microfabrication, and performance. J Microelectromech Syst 11:136–146. doi:10.1109/84.993448

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Austrian Science Fund (FWF) within the project L521 “Metal-composite Nanomembranes for Advanced Infrared Photonics” and by the Serbian Ministry of Science and technology within the project 11027 “Microsystem and Nanosystem Technologies and Devices”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jovan Matović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matović, J., Jakšić, Z. A comparative analyze of fundamental noise in cantilever sensors based on lateral and longitudinal displacement: case of thermal infrared detectors. Microsyst Technol 16, 755–763 (2010). https://doi.org/10.1007/s00542-010-1052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-010-1052-6

Keywords

Navigation